Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification

To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2014-05, Vol.18 (3), p.984-990
Hauptverfasser: Liu, Fayao, Zhou, Luping, Shen, Chunhua, Yin, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 3
container_start_page 984
container_title IEEE journal of biomedical and health informatics
container_volume 18
creator Liu, Fayao
Zhou, Luping
Shen, Chunhua
Yin, Jianping
description To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this paper, we propose a novel multiple kernel-learning framework to combine multimodal features for AD classification, which is scalable and easy to implement. Contrary to the usual way of solving the problem in the dual, we look at the optimization from a new perspective. By conducting Fourier transform on the Gaussian kernel, we explicitly compute the mapping function, which leads to a more straightforward solution of the problem in the primal. Furthermore, we impose the mixed L 21 norm constraint on the kernel weights, known as the group lasso regularization, to enforce group sparsity among different feature modalities. This actually acts as a role of feature modality selection, while at the same time exploiting complementary information among different kernels. Therefore, it is able to extract the most discriminative features for classification. Experiments on the ADNI dataset demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/JBHI.2013.2285378
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6627945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6627945</ieee_id><sourcerecordid>3387992511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8c33864596017bc64208b82d74d338da94a6d8a6e32bf5a891a7a3fd7e53e03f3</originalsourceid><addsrcrecordid>eNpdkDtPwzAQgC0Egqr0ByAkZIkBlha_4thjKa9CEQwgsUVucqGunKTYyQC_HpcWBryc7-670-lD6IiSEaVEX9xf3k1HjFA-YkwlPFU7qMeoVEPGiNr9_VMtDtAghCWJT8WSlvvogAnKGeGkh94eO9falQP8AL4Gh2dgfG3rd2xr3C4AP3tbGYfLxuMftGqKmI7d1wJsBf4s4CsbwATAE2dCsKXNTWub-hDtlcYFGGxjH73eXL9M7oazp9vpZDwb5lzodqhyzpUUiZaEpvNcinj8XLEiFUVsFEYLIwtlJHA2LxOjNDWp4WWRQsKB8JL30flm78o3Hx2ENqtsyME5U0PThYwmjAsipBYRPf2HLpvO1_G6SAmdCCZTHim6oXLfhOChzFZrBf4zoyRbm8_W5rO1-WxrPs6cbDd38wqKv4lfzxE43gAWAP7aUrJUi4R_A7hHhYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549542673</pqid></control><display><type>article</type><title>Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Fayao ; Zhou, Luping ; Shen, Chunhua ; Yin, Jianping</creator><creatorcontrib>Liu, Fayao ; Zhou, Luping ; Shen, Chunhua ; Yin, Jianping</creatorcontrib><description>To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this paper, we propose a novel multiple kernel-learning framework to combine multimodal features for AD classification, which is scalable and easy to implement. Contrary to the usual way of solving the problem in the dual, we look at the optimization from a new perspective. By conducting Fourier transform on the Gaussian kernel, we explicitly compute the mapping function, which leads to a more straightforward solution of the problem in the primal. Furthermore, we impose the mixed L 21 norm constraint on the kernel weights, known as the group lasso regularization, to enforce group sparsity among different feature modalities. This actually acts as a role of feature modality selection, while at the same time exploiting complementary information among different kernels. Therefore, it is able to extract the most discriminative features for classification. Experiments on the ADNI dataset demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2013.2285378</identifier><identifier>PMID: 24132030</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Alzheimer Disease - cerebrospinal fluid ; Alzheimer Disease - classification ; Alzheimer Disease - pathology ; Alzheimer's disease (AD) ; Artificial Intelligence ; Biomarkers ; Biomarkers - cerebrospinal fluid ; Brain - pathology ; Databases, Factual ; Fourier Analysis ; Fourier transforms ; group Lasso ; Humans ; Kernel ; Magnetic Resonance Imaging ; multimodal features ; multiple kernel learning (MKL) ; random Fourier feature (RFF) ; Support vector machines ; Training</subject><ispartof>IEEE journal of biomedical and health informatics, 2014-05, Vol.18 (3), p.984-990</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8c33864596017bc64208b82d74d338da94a6d8a6e32bf5a891a7a3fd7e53e03f3</citedby><cites>FETCH-LOGICAL-c349t-8c33864596017bc64208b82d74d338da94a6d8a6e32bf5a891a7a3fd7e53e03f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6627945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6627945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24132030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fayao</creatorcontrib><creatorcontrib>Zhou, Luping</creatorcontrib><creatorcontrib>Shen, Chunhua</creatorcontrib><creatorcontrib>Yin, Jianping</creatorcontrib><title>Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this paper, we propose a novel multiple kernel-learning framework to combine multimodal features for AD classification, which is scalable and easy to implement. Contrary to the usual way of solving the problem in the dual, we look at the optimization from a new perspective. By conducting Fourier transform on the Gaussian kernel, we explicitly compute the mapping function, which leads to a more straightforward solution of the problem in the primal. Furthermore, we impose the mixed L 21 norm constraint on the kernel weights, known as the group lasso regularization, to enforce group sparsity among different feature modalities. This actually acts as a role of feature modality selection, while at the same time exploiting complementary information among different kernels. Therefore, it is able to extract the most discriminative features for classification. Experiments on the ADNI dataset demonstrate the effectiveness of the proposed method.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alzheimer Disease - cerebrospinal fluid</subject><subject>Alzheimer Disease - classification</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease (AD)</subject><subject>Artificial Intelligence</subject><subject>Biomarkers</subject><subject>Biomarkers - cerebrospinal fluid</subject><subject>Brain - pathology</subject><subject>Databases, Factual</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>group Lasso</subject><subject>Humans</subject><subject>Kernel</subject><subject>Magnetic Resonance Imaging</subject><subject>multimodal features</subject><subject>multiple kernel learning (MKL)</subject><subject>random Fourier feature (RFF)</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkDtPwzAQgC0Egqr0ByAkZIkBlha_4thjKa9CEQwgsUVucqGunKTYyQC_HpcWBryc7-670-lD6IiSEaVEX9xf3k1HjFA-YkwlPFU7qMeoVEPGiNr9_VMtDtAghCWJT8WSlvvogAnKGeGkh94eO9falQP8AL4Gh2dgfG3rd2xr3C4AP3tbGYfLxuMftGqKmI7d1wJsBf4s4CsbwATAE2dCsKXNTWub-hDtlcYFGGxjH73eXL9M7oazp9vpZDwb5lzodqhyzpUUiZaEpvNcinj8XLEiFUVsFEYLIwtlJHA2LxOjNDWp4WWRQsKB8JL30flm78o3Hx2ENqtsyME5U0PThYwmjAsipBYRPf2HLpvO1_G6SAmdCCZTHim6oXLfhOChzFZrBf4zoyRbm8_W5rO1-WxrPs6cbDd38wqKv4lfzxE43gAWAP7aUrJUi4R_A7hHhYs</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Liu, Fayao</creator><creator>Zhou, Luping</creator><creator>Shen, Chunhua</creator><creator>Yin, Jianping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140501</creationdate><title>Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification</title><author>Liu, Fayao ; Zhou, Luping ; Shen, Chunhua ; Yin, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8c33864596017bc64208b82d74d338da94a6d8a6e32bf5a891a7a3fd7e53e03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alzheimer Disease - cerebrospinal fluid</topic><topic>Alzheimer Disease - classification</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease (AD)</topic><topic>Artificial Intelligence</topic><topic>Biomarkers</topic><topic>Biomarkers - cerebrospinal fluid</topic><topic>Brain - pathology</topic><topic>Databases, Factual</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>group Lasso</topic><topic>Humans</topic><topic>Kernel</topic><topic>Magnetic Resonance Imaging</topic><topic>multimodal features</topic><topic>multiple kernel learning (MKL)</topic><topic>random Fourier feature (RFF)</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fayao</creatorcontrib><creatorcontrib>Zhou, Luping</creatorcontrib><creatorcontrib>Shen, Chunhua</creatorcontrib><creatorcontrib>Yin, Jianping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Fayao</au><au>Zhou, Luping</au><au>Shen, Chunhua</au><au>Yin, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>18</volume><issue>3</issue><spage>984</spage><epage>990</epage><pages>984-990</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this paper, we propose a novel multiple kernel-learning framework to combine multimodal features for AD classification, which is scalable and easy to implement. Contrary to the usual way of solving the problem in the dual, we look at the optimization from a new perspective. By conducting Fourier transform on the Gaussian kernel, we explicitly compute the mapping function, which leads to a more straightforward solution of the problem in the primal. Furthermore, we impose the mixed L 21 norm constraint on the kernel weights, known as the group lasso regularization, to enforce group sparsity among different feature modalities. This actually acts as a role of feature modality selection, while at the same time exploiting complementary information among different kernels. Therefore, it is able to extract the most discriminative features for classification. Experiments on the ADNI dataset demonstrate the effectiveness of the proposed method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24132030</pmid><doi>10.1109/JBHI.2013.2285378</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2014-05, Vol.18 (3), p.984-990
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_6627945
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - classification
Alzheimer Disease - pathology
Alzheimer's disease (AD)
Artificial Intelligence
Biomarkers
Biomarkers - cerebrospinal fluid
Brain - pathology
Databases, Factual
Fourier Analysis
Fourier transforms
group Lasso
Humans
Kernel
Magnetic Resonance Imaging
multimodal features
multiple kernel learning (MKL)
random Fourier feature (RFF)
Support vector machines
Training
title Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Kernel%20Learning%20in%20the%20Primal%20for%20Multimodal%20Alzheimer's%20Disease%20Classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Liu,%20Fayao&rft.date=2014-05-01&rft.volume=18&rft.issue=3&rft.spage=984&rft.epage=990&rft.pages=984-990&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2013.2285378&rft_dat=%3Cproquest_RIE%3E3387992511%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549542673&rft_id=info:pmid/24132030&rft_ieee_id=6627945&rfr_iscdi=true