Turning datasets into patient-centered knowledge utilities

This paper describes an approach utilizing both data analysis and visualization to help diabetes patients improve medication compliance. Through information visualization tools, we aim to provide feedback to patients to encourage behavior change. The system has two core building blocks: (1) Data ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bahati, Raphael, Gwadry-Sridhar, Femida
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue
container_start_page 558
container_title
container_volume
creator Bahati, Raphael
Gwadry-Sridhar, Femida
description This paper describes an approach utilizing both data analysis and visualization to help diabetes patients improve medication compliance. Through information visualization tools, we aim to provide feedback to patients to encourage behavior change. The system has two core building blocks: (1) Data analysis combining several statistical and machine learning models, founded under different principles and assumptions, into a single meta-model for predicting compliance behavior. The aim is to create superior models for behavior prediction - knowledge that can then be translated into patient-centered decision-support tools. (2) Incorporating data analysis and visualization enabling datasets to be turned into knowledge utilities that can intelligently interact with participants by alerting them to any interesting correlations within the data. Such tools could provide feedback indicating, for example, a high-risk to medication non-compliance behavior in which case appropriate resources could be directed to those who need help the most.
doi_str_mv 10.1109/CBMS.2013.6627876
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6627876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6627876</ieee_id><sourcerecordid>6627876</sourcerecordid><originalsourceid>FETCH-LOGICAL-i245t-36dc9331235e71ebc1776888dda94916dedc99f1c70ad5f5eb3b8d8ef67c1f253</originalsourceid><addsrcrecordid>eNotj81KAzEURiMoWGsfQNzMC8yYmzvJTdxp8Q8qLqzrkpncKdFxWiYp4ts7YDfnWxz44AhxBbICkO5mef_6XikJWBmjyJI5EQtHFmpyDqRGPBUzkAZLAqXPxUVKn1LKmgBn4nZ9GIc4bIvgs0-cUxGHvCv2PkcectlO4JFD8TXsfnoOWy4OOfZxsulSnHW-T7w47lx8PD6sl8_l6u3pZXm3KqOqdS7RhNYhgkLNBNy0QGSstSF4VzswgSfvOmhJ-qA7zQ02NljuDLXQKY1zcf3_G5l5sx_jtx9_N8dU_ANoA0iW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Turning datasets into patient-centered knowledge utilities</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bahati, Raphael ; Gwadry-Sridhar, Femida</creator><creatorcontrib>Bahati, Raphael ; Gwadry-Sridhar, Femida</creatorcontrib><description>This paper describes an approach utilizing both data analysis and visualization to help diabetes patients improve medication compliance. Through information visualization tools, we aim to provide feedback to patients to encourage behavior change. The system has two core building blocks: (1) Data analysis combining several statistical and machine learning models, founded under different principles and assumptions, into a single meta-model for predicting compliance behavior. The aim is to create superior models for behavior prediction - knowledge that can then be translated into patient-centered decision-support tools. (2) Incorporating data analysis and visualization enabling datasets to be turned into knowledge utilities that can intelligently interact with participants by alerting them to any interesting correlations within the data. Such tools could provide feedback indicating, for example, a high-risk to medication non-compliance behavior in which case appropriate resources could be directed to those who need help the most.</description><identifier>ISSN: 1063-7125</identifier><identifier>EISBN: 9781479910533</identifier><identifier>EISBN: 1479910538</identifier><identifier>DOI: 10.1109/CBMS.2013.6627876</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Data analysis ; Data visualization ; Diabetes ; Diseases ; Predictive models</subject><ispartof>Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, 2013, p.558-559</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6627876$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6627876$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bahati, Raphael</creatorcontrib><creatorcontrib>Gwadry-Sridhar, Femida</creatorcontrib><title>Turning datasets into patient-centered knowledge utilities</title><title>Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems</title><addtitle>CBMS</addtitle><description>This paper describes an approach utilizing both data analysis and visualization to help diabetes patients improve medication compliance. Through information visualization tools, we aim to provide feedback to patients to encourage behavior change. The system has two core building blocks: (1) Data analysis combining several statistical and machine learning models, founded under different principles and assumptions, into a single meta-model for predicting compliance behavior. The aim is to create superior models for behavior prediction - knowledge that can then be translated into patient-centered decision-support tools. (2) Incorporating data analysis and visualization enabling datasets to be turned into knowledge utilities that can intelligently interact with participants by alerting them to any interesting correlations within the data. Such tools could provide feedback indicating, for example, a high-risk to medication non-compliance behavior in which case appropriate resources could be directed to those who need help the most.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>Diabetes</subject><subject>Diseases</subject><subject>Predictive models</subject><issn>1063-7125</issn><isbn>9781479910533</isbn><isbn>1479910538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEURiMoWGsfQNzMC8yYmzvJTdxp8Q8qLqzrkpncKdFxWiYp4ts7YDfnWxz44AhxBbICkO5mef_6XikJWBmjyJI5EQtHFmpyDqRGPBUzkAZLAqXPxUVKn1LKmgBn4nZ9GIc4bIvgs0-cUxGHvCv2PkcectlO4JFD8TXsfnoOWy4OOfZxsulSnHW-T7w47lx8PD6sl8_l6u3pZXm3KqOqdS7RhNYhgkLNBNy0QGSstSF4VzswgSfvOmhJ-qA7zQ02NljuDLXQKY1zcf3_G5l5sx_jtx9_N8dU_ANoA0iW</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Bahati, Raphael</creator><creator>Gwadry-Sridhar, Femida</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201306</creationdate><title>Turning datasets into patient-centered knowledge utilities</title><author>Bahati, Raphael ; Gwadry-Sridhar, Femida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i245t-36dc9331235e71ebc1776888dda94916dedc99f1c70ad5f5eb3b8d8ef67c1f253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>Diabetes</topic><topic>Diseases</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Bahati, Raphael</creatorcontrib><creatorcontrib>Gwadry-Sridhar, Femida</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bahati, Raphael</au><au>Gwadry-Sridhar, Femida</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Turning datasets into patient-centered knowledge utilities</atitle><btitle>Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems</btitle><stitle>CBMS</stitle><date>2013-06</date><risdate>2013</risdate><spage>558</spage><epage>559</epage><pages>558-559</pages><issn>1063-7125</issn><eisbn>9781479910533</eisbn><eisbn>1479910538</eisbn><abstract>This paper describes an approach utilizing both data analysis and visualization to help diabetes patients improve medication compliance. Through information visualization tools, we aim to provide feedback to patients to encourage behavior change. The system has two core building blocks: (1) Data analysis combining several statistical and machine learning models, founded under different principles and assumptions, into a single meta-model for predicting compliance behavior. The aim is to create superior models for behavior prediction - knowledge that can then be translated into patient-centered decision-support tools. (2) Incorporating data analysis and visualization enabling datasets to be turned into knowledge utilities that can intelligently interact with participants by alerting them to any interesting correlations within the data. Such tools could provide feedback indicating, for example, a high-risk to medication non-compliance behavior in which case appropriate resources could be directed to those who need help the most.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2013.6627876</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-7125
ispartof Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, 2013, p.558-559
issn 1063-7125
language eng
recordid cdi_ieee_primary_6627876
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Computational modeling
Data analysis
Data visualization
Diabetes
Diseases
Predictive models
title Turning datasets into patient-centered knowledge utilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Turning%20datasets%20into%20patient-centered%20knowledge%20utilities&rft.btitle=Proceedings%20of%20the%2026th%20IEEE%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems&rft.au=Bahati,%20Raphael&rft.date=2013-06&rft.spage=558&rft.epage=559&rft.pages=558-559&rft.issn=1063-7125&rft_id=info:doi/10.1109/CBMS.2013.6627876&rft_dat=%3Cieee_6IE%3E6627876%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479910533&rft.eisbn_list=1479910538&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6627876&rfr_iscdi=true