Vibration-based robust health diagnostics for mechanical failure modes of power transformers

A power transformer is one of the main components in a power plant and transformer failure may provoke power plant shut-down with significant capital loss. Many techniques of vibration-based health diagnostics have been developed in order to prevent mechanical failures of the transformer. Vibration-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Joung Taek Yoon, Youn, Byeng D., Kyung Min Park, Wook-Ryun Lee
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Joung Taek Yoon
Youn, Byeng D.
Kyung Min Park
Wook-Ryun Lee
description A power transformer is one of the main components in a power plant and transformer failure may provoke power plant shut-down with significant capital loss. Many techniques of vibration-based health diagnostics have been developed in order to prevent mechanical failures of the transformer. Vibration-based health diagnostics results are generally sensitive to the number of sensors and their locations. This study aims at developing robust health diagnostics for two dominant mechanical failure mechanisms of the transformer. Based upon the characteristics of transformer vibration, robust health indices were developed using sensitivity analysis. This study employed 33 transformers and each with 36~48 accelerometers for demonstration purpose. It is concluded that the proposed health index are suitable for robust health diagnostics and fault identification of power transformers.
doi_str_mv 10.1109/ICPHM.2013.6621421
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6621421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6621421</ieee_id><sourcerecordid>6621421</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fcf5a164b3297bb485bcfbe6ef3cfbac3b9c8e1bc58bb5996b49ff2c46f5754b3</originalsourceid><addsrcrecordid>eNotj81KxDAURuNCUMd5Ad3kBVrz06TNUoo6AyO6GFwJQ256YyNtMyQdxLe34KzO5jsfHELuOCs5Z-Zh275vXkvBuCy1FrwS_ILc8ErXUtVC1FdknfM3Y4zXWisprsnnR4Bk5xCnAmzGjqYIpzzTHu0w97QL9muKeQ4uUx8THdH1dgrODtTbMJwS0jF2mGn09Bh_MNE52Skv0xFTviWX3g4Z12euyP75ad9uit3by7Z93BXBsLnwzivLdQVSmBqgahQ4D6jRy4XWSTCuQQ5ONQDKGA2V8V64SntVq0Vbkfv_24CIh2MKo02_h3O__APJ2VR-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vibration-based robust health diagnostics for mechanical failure modes of power transformers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Joung Taek Yoon ; Youn, Byeng D. ; Kyung Min Park ; Wook-Ryun Lee</creator><creatorcontrib>Joung Taek Yoon ; Youn, Byeng D. ; Kyung Min Park ; Wook-Ryun Lee</creatorcontrib><description>A power transformer is one of the main components in a power plant and transformer failure may provoke power plant shut-down with significant capital loss. Many techniques of vibration-based health diagnostics have been developed in order to prevent mechanical failures of the transformer. Vibration-based health diagnostics results are generally sensitive to the number of sensors and their locations. This study aims at developing robust health diagnostics for two dominant mechanical failure mechanisms of the transformer. Based upon the characteristics of transformer vibration, robust health indices were developed using sensitivity analysis. This study employed 33 transformers and each with 36~48 accelerometers for demonstration purpose. It is concluded that the proposed health index are suitable for robust health diagnostics and fault identification of power transformers.</description><identifier>EISBN: 1467357227</identifier><identifier>EISBN: 9781467357234</identifier><identifier>EISBN: 1467357235</identifier><identifier>EISBN: 9781467357227</identifier><identifier>DOI: 10.1109/ICPHM.2013.6621421</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fault diagnosis ; fault identification ; health index ; Monitoring ; Nickel ; oil-filled power transformer ; sensitivity analysis ; Windings</subject><ispartof>2013 IEEE Conference on Prognostics and Health Management (PHM), 2013, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6621421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6621421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Joung Taek Yoon</creatorcontrib><creatorcontrib>Youn, Byeng D.</creatorcontrib><creatorcontrib>Kyung Min Park</creatorcontrib><creatorcontrib>Wook-Ryun Lee</creatorcontrib><title>Vibration-based robust health diagnostics for mechanical failure modes of power transformers</title><title>2013 IEEE Conference on Prognostics and Health Management (PHM)</title><addtitle>ICPHM</addtitle><description>A power transformer is one of the main components in a power plant and transformer failure may provoke power plant shut-down with significant capital loss. Many techniques of vibration-based health diagnostics have been developed in order to prevent mechanical failures of the transformer. Vibration-based health diagnostics results are generally sensitive to the number of sensors and their locations. This study aims at developing robust health diagnostics for two dominant mechanical failure mechanisms of the transformer. Based upon the characteristics of transformer vibration, robust health indices were developed using sensitivity analysis. This study employed 33 transformers and each with 36~48 accelerometers for demonstration purpose. It is concluded that the proposed health index are suitable for robust health diagnostics and fault identification of power transformers.</description><subject>Fault diagnosis</subject><subject>fault identification</subject><subject>health index</subject><subject>Monitoring</subject><subject>Nickel</subject><subject>oil-filled power transformer</subject><subject>sensitivity analysis</subject><subject>Windings</subject><isbn>1467357227</isbn><isbn>9781467357234</isbn><isbn>1467357235</isbn><isbn>9781467357227</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAURuNCUMd5Ad3kBVrz06TNUoo6AyO6GFwJQ256YyNtMyQdxLe34KzO5jsfHELuOCs5Z-Zh275vXkvBuCy1FrwS_ILc8ErXUtVC1FdknfM3Y4zXWisprsnnR4Bk5xCnAmzGjqYIpzzTHu0w97QL9muKeQ4uUx8THdH1dgrODtTbMJwS0jF2mGn09Bh_MNE52Skv0xFTviWX3g4Z12euyP75ad9uit3by7Z93BXBsLnwzivLdQVSmBqgahQ4D6jRy4XWSTCuQQ5ONQDKGA2V8V64SntVq0Vbkfv_24CIh2MKo02_h3O__APJ2VR-</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Joung Taek Yoon</creator><creator>Youn, Byeng D.</creator><creator>Kyung Min Park</creator><creator>Wook-Ryun Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Vibration-based robust health diagnostics for mechanical failure modes of power transformers</title><author>Joung Taek Yoon ; Youn, Byeng D. ; Kyung Min Park ; Wook-Ryun Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fcf5a164b3297bb485bcfbe6ef3cfbac3b9c8e1bc58bb5996b49ff2c46f5754b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Fault diagnosis</topic><topic>fault identification</topic><topic>health index</topic><topic>Monitoring</topic><topic>Nickel</topic><topic>oil-filled power transformer</topic><topic>sensitivity analysis</topic><topic>Windings</topic><toplevel>online_resources</toplevel><creatorcontrib>Joung Taek Yoon</creatorcontrib><creatorcontrib>Youn, Byeng D.</creatorcontrib><creatorcontrib>Kyung Min Park</creatorcontrib><creatorcontrib>Wook-Ryun Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Joung Taek Yoon</au><au>Youn, Byeng D.</au><au>Kyung Min Park</au><au>Wook-Ryun Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vibration-based robust health diagnostics for mechanical failure modes of power transformers</atitle><btitle>2013 IEEE Conference on Prognostics and Health Management (PHM)</btitle><stitle>ICPHM</stitle><date>2013-06</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eisbn>1467357227</eisbn><eisbn>9781467357234</eisbn><eisbn>1467357235</eisbn><eisbn>9781467357227</eisbn><abstract>A power transformer is one of the main components in a power plant and transformer failure may provoke power plant shut-down with significant capital loss. Many techniques of vibration-based health diagnostics have been developed in order to prevent mechanical failures of the transformer. Vibration-based health diagnostics results are generally sensitive to the number of sensors and their locations. This study aims at developing robust health diagnostics for two dominant mechanical failure mechanisms of the transformer. Based upon the characteristics of transformer vibration, robust health indices were developed using sensitivity analysis. This study employed 33 transformers and each with 36~48 accelerometers for demonstration purpose. It is concluded that the proposed health index are suitable for robust health diagnostics and fault identification of power transformers.</abstract><pub>IEEE</pub><doi>10.1109/ICPHM.2013.6621421</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1467357227
ispartof 2013 IEEE Conference on Prognostics and Health Management (PHM), 2013, p.1-5
issn
language eng
recordid cdi_ieee_primary_6621421
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fault diagnosis
fault identification
health index
Monitoring
Nickel
oil-filled power transformer
sensitivity analysis
Windings
title Vibration-based robust health diagnostics for mechanical failure modes of power transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vibration-based%20robust%20health%20diagnostics%20for%20mechanical%20failure%20modes%20of%20power%20transformers&rft.btitle=2013%20IEEE%20Conference%20on%20Prognostics%20and%20Health%20Management%20(PHM)&rft.au=Joung%20Taek%20Yoon&rft.date=2013-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft_id=info:doi/10.1109/ICPHM.2013.6621421&rft_dat=%3Cieee_6IE%3E6621421%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467357227&rft.eisbn_list=9781467357234&rft.eisbn_list=1467357235&rft.eisbn_list=9781467357227&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6621421&rfr_iscdi=true