Bi-Polynomial Modeling of Low-Frequency Reflectances

We present a bi-polynomial reflectance model that can precisely represent the low-frequency component of reflectance. Most existing reflectance models aim at accurately representing the complete reflectance domain for photo-realistic rendering purposes. In contrast, our bi-polynomial model is develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2014-06, Vol.36 (6), p.1078-1091
Hauptverfasser: Boxin Shi, Ping Tan, Matsushita, Yasuyuki, Ikeuchi, Katsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1091
container_issue 6
container_start_page 1078
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 36
creator Boxin Shi
Ping Tan
Matsushita, Yasuyuki
Ikeuchi, Katsushi
description We present a bi-polynomial reflectance model that can precisely represent the low-frequency component of reflectance. Most existing reflectance models aim at accurately representing the complete reflectance domain for photo-realistic rendering purposes. In contrast, our bi-polynomial model is developed for the purpose of accurately solving inverse problems by effectively discarding the high-frequency component while retaining nonlinear variations in the low-frequency part. The bi-polynomial reflectance model is useful for estimating reflectance and shape of an object. Experimental evaluation in comparison with other parametric reflectance models demonstrates that the proposed model achieves better performance in reflectometry and photometric stereo applications.
doi_str_mv 10.1109/TPAMI.2013.196
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6620870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6620870</ieee_id><sourcerecordid>3377806991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-e997b46c108e7513cd7e28aefb1f0145a37cb48369ae9353af779e2ea0c1c10d3</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgitbq1YsgBRG8bM0k2XwcVawKLRbRc8hmZ2Vlu9FNi_Tfm9qq4MVTDvPM8OYl5AjoEICai6fp5eR-yCjwIRi5RXpguMl4zs026VGQLNOa6T2yH-MrpSByynfJHpNJMMV6RFzV2TQ0yzbMatcMJqHEpm5fBqEajMNHNurwfYGtXw4esWrQz13rMR6Qnco1EQ83b588j26eru-y8cPt_fXlOPOCynmGxqhCSA9Uo8qB-1Ih0w6rAqpVFMeVL4Tm0jg0KZCrlDLI0FEPaankfXK-vvvWhRQjzu2sjh6bxrUYFtGCAsh5Lpn4n0pptDa54Ime_qGvYdG16SMWciEpZUKrpIZr5bsQY4eVfevqmeuWFqhdVW-_qrer6m2qPi2cbM4uihmWP_y76wTONsBF75qqS13W8ddpSblmeXLHa1cj4s9YSka1ovwTeJaRpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546002487</pqid></control><display><type>article</type><title>Bi-Polynomial Modeling of Low-Frequency Reflectances</title><source>IEEE Electronic Library (IEL)</source><creator>Boxin Shi ; Ping Tan ; Matsushita, Yasuyuki ; Ikeuchi, Katsushi</creator><creatorcontrib>Boxin Shi ; Ping Tan ; Matsushita, Yasuyuki ; Ikeuchi, Katsushi</creatorcontrib><description>We present a bi-polynomial reflectance model that can precisely represent the low-frequency component of reflectance. Most existing reflectance models aim at accurately representing the complete reflectance domain for photo-realistic rendering purposes. In contrast, our bi-polynomial model is developed for the purpose of accurately solving inverse problems by effectively discarding the high-frequency component while retaining nonlinear variations in the low-frequency part. The bi-polynomial reflectance model is useful for estimating reflectance and shape of an object. Experimental evaluation in comparison with other parametric reflectance models demonstrates that the proposed model achieves better performance in reflectometry and photometric stereo applications.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2013.196</identifier><identifier>PMID: 26353272</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>and thresholding ; Applied sciences ; Artificial intelligence ; Brain modeling ; color ; Computational modeling ; Computer science; control theory; systems ; Exact sciences and technology ; Intelligence ; Intensity ; Inverse problems ; Lighting ; Materials ; Mathematical model ; Nonlinearity ; Pattern analysis ; Pattern recognition. Digital image processing. Computational geometry ; Photometry ; Polynomials ; Reflectance ; Reflectivity ; Rendering ; Shape</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2014-06, Vol.36 (6), p.1078-1091</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-e997b46c108e7513cd7e28aefb1f0145a37cb48369ae9353af779e2ea0c1c10d3</citedby><cites>FETCH-LOGICAL-c406t-e997b46c108e7513cd7e28aefb1f0145a37cb48369ae9353af779e2ea0c1c10d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6620870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6620870$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28603825$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26353272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boxin Shi</creatorcontrib><creatorcontrib>Ping Tan</creatorcontrib><creatorcontrib>Matsushita, Yasuyuki</creatorcontrib><creatorcontrib>Ikeuchi, Katsushi</creatorcontrib><title>Bi-Polynomial Modeling of Low-Frequency Reflectances</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a bi-polynomial reflectance model that can precisely represent the low-frequency component of reflectance. Most existing reflectance models aim at accurately representing the complete reflectance domain for photo-realistic rendering purposes. In contrast, our bi-polynomial model is developed for the purpose of accurately solving inverse problems by effectively discarding the high-frequency component while retaining nonlinear variations in the low-frequency part. The bi-polynomial reflectance model is useful for estimating reflectance and shape of an object. Experimental evaluation in comparison with other parametric reflectance models demonstrates that the proposed model achieves better performance in reflectometry and photometric stereo applications.</description><subject>and thresholding</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Brain modeling</subject><subject>color</subject><subject>Computational modeling</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Intelligence</subject><subject>Intensity</subject><subject>Inverse problems</subject><subject>Lighting</subject><subject>Materials</subject><subject>Mathematical model</subject><subject>Nonlinearity</subject><subject>Pattern analysis</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photometry</subject><subject>Polynomials</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>Rendering</subject><subject>Shape</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0E1LAzEQBuAgitbq1YsgBRG8bM0k2XwcVawKLRbRc8hmZ2Vlu9FNi_Tfm9qq4MVTDvPM8OYl5AjoEICai6fp5eR-yCjwIRi5RXpguMl4zs026VGQLNOa6T2yH-MrpSByynfJHpNJMMV6RFzV2TQ0yzbMatcMJqHEpm5fBqEajMNHNurwfYGtXw4esWrQz13rMR6Qnco1EQ83b588j26eru-y8cPt_fXlOPOCynmGxqhCSA9Uo8qB-1Ih0w6rAqpVFMeVL4Tm0jg0KZCrlDLI0FEPaankfXK-vvvWhRQjzu2sjh6bxrUYFtGCAsh5Lpn4n0pptDa54Ime_qGvYdG16SMWciEpZUKrpIZr5bsQY4eVfevqmeuWFqhdVW-_qrer6m2qPi2cbM4uihmWP_y76wTONsBF75qqS13W8ddpSblmeXLHa1cj4s9YSka1ovwTeJaRpg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Boxin Shi</creator><creator>Ping Tan</creator><creator>Matsushita, Yasuyuki</creator><creator>Ikeuchi, Katsushi</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Bi-Polynomial Modeling of Low-Frequency Reflectances</title><author>Boxin Shi ; Ping Tan ; Matsushita, Yasuyuki ; Ikeuchi, Katsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-e997b46c108e7513cd7e28aefb1f0145a37cb48369ae9353af779e2ea0c1c10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>and thresholding</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Brain modeling</topic><topic>color</topic><topic>Computational modeling</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Intelligence</topic><topic>Intensity</topic><topic>Inverse problems</topic><topic>Lighting</topic><topic>Materials</topic><topic>Mathematical model</topic><topic>Nonlinearity</topic><topic>Pattern analysis</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photometry</topic><topic>Polynomials</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>Rendering</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boxin Shi</creatorcontrib><creatorcontrib>Ping Tan</creatorcontrib><creatorcontrib>Matsushita, Yasuyuki</creatorcontrib><creatorcontrib>Ikeuchi, Katsushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boxin Shi</au><au>Ping Tan</au><au>Matsushita, Yasuyuki</au><au>Ikeuchi, Katsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi-Polynomial Modeling of Low-Frequency Reflectances</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>36</volume><issue>6</issue><spage>1078</spage><epage>1091</epage><pages>1078-1091</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We present a bi-polynomial reflectance model that can precisely represent the low-frequency component of reflectance. Most existing reflectance models aim at accurately representing the complete reflectance domain for photo-realistic rendering purposes. In contrast, our bi-polynomial model is developed for the purpose of accurately solving inverse problems by effectively discarding the high-frequency component while retaining nonlinear variations in the low-frequency part. The bi-polynomial reflectance model is useful for estimating reflectance and shape of an object. Experimental evaluation in comparison with other parametric reflectance models demonstrates that the proposed model achieves better performance in reflectometry and photometric stereo applications.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>26353272</pmid><doi>10.1109/TPAMI.2013.196</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2014-06, Vol.36 (6), p.1078-1091
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_6620870
source IEEE Electronic Library (IEL)
subjects and thresholding
Applied sciences
Artificial intelligence
Brain modeling
color
Computational modeling
Computer science
control theory
systems
Exact sciences and technology
Intelligence
Intensity
Inverse problems
Lighting
Materials
Mathematical model
Nonlinearity
Pattern analysis
Pattern recognition. Digital image processing. Computational geometry
Photometry
Polynomials
Reflectance
Reflectivity
Rendering
Shape
title Bi-Polynomial Modeling of Low-Frequency Reflectances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi-Polynomial%20Modeling%20of%20Low-Frequency%20Reflectances&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Boxin%20Shi&rft.date=2014-06-01&rft.volume=36&rft.issue=6&rft.spage=1078&rft.epage=1091&rft.pages=1078-1091&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2013.196&rft_dat=%3Cproquest_RIE%3E3377806991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546002487&rft_id=info:pmid/26353272&rft_ieee_id=6620870&rfr_iscdi=true