A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network
Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the larg...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | |
container_volume | |
creator | Torkaman, Atefeh Javadzadeh, Ghazaleh Bahrololum, Marjan |
description | Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the large volumes of data for the construction of an efficient host intrusion detection system. This paper represents a hybrid approach for modeling HIDS combines anomaly, misuse detection, based on two-layer Genetic algorithm and neural network which uses simple data mining techniques to process the web application traffics. Two-layer Genetic algorithm and neural network are applied respectively as anomaly and misuse detection. Suspicious intrusions can be traced back to its original source. The proposed model is able to detect critical vulnerabilities based on Open Web Application Security Project (OWASP). |
doi_str_mv | 10.1109/IKT.2013.6620045 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6620045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6620045</ieee_id><sourcerecordid>6620045</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cd38928e4608b5a79404c6e309bd99f2e44730e6e679138957972210e13304093</originalsourceid><addsrcrecordid>eNotj8tqwzAURNVFIW2afaEb_YDdq4claxnSR0wDXdRZB9m-cdTKdpEViv--hmR1YOYwMIQ8MkgZA_NcfJQpByZSpTiAzG7IPZNKCyUN5AuyGsdvAGB6jhjckXJNT1MVXENdH9F712If6bZ4-aLd0KCn59H1LY1_Q-LthIHOPUZXU-vbIbh46qjtG9rjOVg_YxbDzwO5PVo_4urKJdm_vZabbbL7fC82613imM5iUjciNzxHqSCvMquNBFkrFGCqxpgjRym1AFSotGGzmmmjOWeATAiQYMSSPF12HSIefoPrbJgO1-PiH-6bTL0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Torkaman, Atefeh ; Javadzadeh, Ghazaleh ; Bahrololum, Marjan</creator><creatorcontrib>Torkaman, Atefeh ; Javadzadeh, Ghazaleh ; Bahrololum, Marjan</creatorcontrib><description>Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the large volumes of data for the construction of an efficient host intrusion detection system. This paper represents a hybrid approach for modeling HIDS combines anomaly, misuse detection, based on two-layer Genetic algorithm and neural network which uses simple data mining techniques to process the web application traffics. Two-layer Genetic algorithm and neural network are applied respectively as anomaly and misuse detection. Suspicious intrusions can be traced back to its original source. The proposed model is able to detect critical vulnerabilities based on Open Web Application Security Project (OWASP).</description><identifier>EISBN: 1467364908</identifier><identifier>EISBN: 9781467364904</identifier><identifier>EISBN: 1467364894</identifier><identifier>EISBN: 9781467364898</identifier><identifier>DOI: 10.1109/IKT.2013.6620045</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Classification algorithms ; Data mining ; Genetic algorithm ; Genetic algorithms ; Host Intrusion Detection System (HIDS) ; Intrusion detection ; neural network ; Neural networks ; Web application attacks</subject><ispartof>The 5th Conference on Information and Knowledge Technology, 2013, p.92-96</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6620045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6620045$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Torkaman, Atefeh</creatorcontrib><creatorcontrib>Javadzadeh, Ghazaleh</creatorcontrib><creatorcontrib>Bahrololum, Marjan</creatorcontrib><title>A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network</title><title>The 5th Conference on Information and Knowledge Technology</title><addtitle>IKT</addtitle><description>Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the large volumes of data for the construction of an efficient host intrusion detection system. This paper represents a hybrid approach for modeling HIDS combines anomaly, misuse detection, based on two-layer Genetic algorithm and neural network which uses simple data mining techniques to process the web application traffics. Two-layer Genetic algorithm and neural network are applied respectively as anomaly and misuse detection. Suspicious intrusions can be traced back to its original source. The proposed model is able to detect critical vulnerabilities based on Open Web Application Security Project (OWASP).</description><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Host Intrusion Detection System (HIDS)</subject><subject>Intrusion detection</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Web application attacks</subject><isbn>1467364908</isbn><isbn>9781467364904</isbn><isbn>1467364894</isbn><isbn>9781467364898</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURNVFIW2afaEb_YDdq4claxnSR0wDXdRZB9m-cdTKdpEViv--hmR1YOYwMIQ8MkgZA_NcfJQpByZSpTiAzG7IPZNKCyUN5AuyGsdvAGB6jhjckXJNT1MVXENdH9F712If6bZ4-aLd0KCn59H1LY1_Q-LthIHOPUZXU-vbIbh46qjtG9rjOVg_YxbDzwO5PVo_4urKJdm_vZabbbL7fC82613imM5iUjciNzxHqSCvMquNBFkrFGCqxpgjRym1AFSotGGzmmmjOWeATAiQYMSSPF12HSIefoPrbJgO1-PiH-6bTL0</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Torkaman, Atefeh</creator><creator>Javadzadeh, Ghazaleh</creator><creator>Bahrololum, Marjan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network</title><author>Torkaman, Atefeh ; Javadzadeh, Ghazaleh ; Bahrololum, Marjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cd38928e4608b5a79404c6e309bd99f2e44730e6e679138957972210e13304093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Host Intrusion Detection System (HIDS)</topic><topic>Intrusion detection</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Web application attacks</topic><toplevel>online_resources</toplevel><creatorcontrib>Torkaman, Atefeh</creatorcontrib><creatorcontrib>Javadzadeh, Ghazaleh</creatorcontrib><creatorcontrib>Bahrololum, Marjan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Torkaman, Atefeh</au><au>Javadzadeh, Ghazaleh</au><au>Bahrololum, Marjan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network</atitle><btitle>The 5th Conference on Information and Knowledge Technology</btitle><stitle>IKT</stitle><date>2013-05</date><risdate>2013</risdate><spage>92</spage><epage>96</epage><pages>92-96</pages><eisbn>1467364908</eisbn><eisbn>9781467364904</eisbn><eisbn>1467364894</eisbn><eisbn>9781467364898</eisbn><abstract>Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the large volumes of data for the construction of an efficient host intrusion detection system. This paper represents a hybrid approach for modeling HIDS combines anomaly, misuse detection, based on two-layer Genetic algorithm and neural network which uses simple data mining techniques to process the web application traffics. Two-layer Genetic algorithm and neural network are applied respectively as anomaly and misuse detection. Suspicious intrusions can be traced back to its original source. The proposed model is able to detect critical vulnerabilities based on Open Web Application Security Project (OWASP).</abstract><pub>IEEE</pub><doi>10.1109/IKT.2013.6620045</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 1467364908 |
ispartof | The 5th Conference on Information and Knowledge Technology, 2013, p.92-96 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6620045 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Classification algorithms Data mining Genetic algorithm Genetic algorithms Host Intrusion Detection System (HIDS) Intrusion detection neural network Neural networks Web application attacks |
title | A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20intelligent%20HIDS%20model%20using%20two-layer%20genetic%20algorithm%20and%20neural%20network&rft.btitle=The%205th%20Conference%20on%20Information%20and%20Knowledge%20Technology&rft.au=Torkaman,%20Atefeh&rft.date=2013-05&rft.spage=92&rft.epage=96&rft.pages=92-96&rft_id=info:doi/10.1109/IKT.2013.6620045&rft_dat=%3Cieee_6IE%3E6620045%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467364908&rft.eisbn_list=9781467364904&rft.eisbn_list=1467364894&rft.eisbn_list=9781467364898&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6620045&rfr_iscdi=true |