A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network

Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Torkaman, Atefeh, Javadzadeh, Ghazaleh, Bahrololum, Marjan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue
container_start_page 92
container_title
container_volume
creator Torkaman, Atefeh
Javadzadeh, Ghazaleh
Bahrololum, Marjan
description Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the large volumes of data for the construction of an efficient host intrusion detection system. This paper represents a hybrid approach for modeling HIDS combines anomaly, misuse detection, based on two-layer Genetic algorithm and neural network which uses simple data mining techniques to process the web application traffics. Two-layer Genetic algorithm and neural network are applied respectively as anomaly and misuse detection. Suspicious intrusions can be traced back to its original source. The proposed model is able to detect critical vulnerabilities based on Open Web Application Security Project (OWASP).
doi_str_mv 10.1109/IKT.2013.6620045
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6620045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6620045</ieee_id><sourcerecordid>6620045</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cd38928e4608b5a79404c6e309bd99f2e44730e6e679138957972210e13304093</originalsourceid><addsrcrecordid>eNotj8tqwzAURNVFIW2afaEb_YDdq4claxnSR0wDXdRZB9m-cdTKdpEViv--hmR1YOYwMIQ8MkgZA_NcfJQpByZSpTiAzG7IPZNKCyUN5AuyGsdvAGB6jhjckXJNT1MVXENdH9F712If6bZ4-aLd0KCn59H1LY1_Q-LthIHOPUZXU-vbIbh46qjtG9rjOVg_YxbDzwO5PVo_4urKJdm_vZabbbL7fC82613imM5iUjciNzxHqSCvMquNBFkrFGCqxpgjRym1AFSotGGzmmmjOWeATAiQYMSSPF12HSIefoPrbJgO1-PiH-6bTL0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Torkaman, Atefeh ; Javadzadeh, Ghazaleh ; Bahrololum, Marjan</creator><creatorcontrib>Torkaman, Atefeh ; Javadzadeh, Ghazaleh ; Bahrololum, Marjan</creatorcontrib><description>Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the large volumes of data for the construction of an efficient host intrusion detection system. This paper represents a hybrid approach for modeling HIDS combines anomaly, misuse detection, based on two-layer Genetic algorithm and neural network which uses simple data mining techniques to process the web application traffics. Two-layer Genetic algorithm and neural network are applied respectively as anomaly and misuse detection. Suspicious intrusions can be traced back to its original source. The proposed model is able to detect critical vulnerabilities based on Open Web Application Security Project (OWASP).</description><identifier>EISBN: 1467364908</identifier><identifier>EISBN: 9781467364904</identifier><identifier>EISBN: 1467364894</identifier><identifier>EISBN: 9781467364898</identifier><identifier>DOI: 10.1109/IKT.2013.6620045</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Classification algorithms ; Data mining ; Genetic algorithm ; Genetic algorithms ; Host Intrusion Detection System (HIDS) ; Intrusion detection ; neural network ; Neural networks ; Web application attacks</subject><ispartof>The 5th Conference on Information and Knowledge Technology, 2013, p.92-96</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6620045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6620045$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Torkaman, Atefeh</creatorcontrib><creatorcontrib>Javadzadeh, Ghazaleh</creatorcontrib><creatorcontrib>Bahrololum, Marjan</creatorcontrib><title>A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network</title><title>The 5th Conference on Information and Knowledge Technology</title><addtitle>IKT</addtitle><description>Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the large volumes of data for the construction of an efficient host intrusion detection system. This paper represents a hybrid approach for modeling HIDS combines anomaly, misuse detection, based on two-layer Genetic algorithm and neural network which uses simple data mining techniques to process the web application traffics. Two-layer Genetic algorithm and neural network are applied respectively as anomaly and misuse detection. Suspicious intrusions can be traced back to its original source. The proposed model is able to detect critical vulnerabilities based on Open Web Application Security Project (OWASP).</description><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Host Intrusion Detection System (HIDS)</subject><subject>Intrusion detection</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Web application attacks</subject><isbn>1467364908</isbn><isbn>9781467364904</isbn><isbn>1467364894</isbn><isbn>9781467364898</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURNVFIW2afaEb_YDdq4claxnSR0wDXdRZB9m-cdTKdpEViv--hmR1YOYwMIQ8MkgZA_NcfJQpByZSpTiAzG7IPZNKCyUN5AuyGsdvAGB6jhjckXJNT1MVXENdH9F712If6bZ4-aLd0KCn59H1LY1_Q-LthIHOPUZXU-vbIbh46qjtG9rjOVg_YxbDzwO5PVo_4urKJdm_vZabbbL7fC82613imM5iUjciNzxHqSCvMquNBFkrFGCqxpgjRym1AFSotGGzmmmjOWeATAiQYMSSPF12HSIefoPrbJgO1-PiH-6bTL0</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Torkaman, Atefeh</creator><creator>Javadzadeh, Ghazaleh</creator><creator>Bahrololum, Marjan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network</title><author>Torkaman, Atefeh ; Javadzadeh, Ghazaleh ; Bahrololum, Marjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cd38928e4608b5a79404c6e309bd99f2e44730e6e679138957972210e13304093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Host Intrusion Detection System (HIDS)</topic><topic>Intrusion detection</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Web application attacks</topic><toplevel>online_resources</toplevel><creatorcontrib>Torkaman, Atefeh</creatorcontrib><creatorcontrib>Javadzadeh, Ghazaleh</creatorcontrib><creatorcontrib>Bahrololum, Marjan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Torkaman, Atefeh</au><au>Javadzadeh, Ghazaleh</au><au>Bahrololum, Marjan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network</atitle><btitle>The 5th Conference on Information and Knowledge Technology</btitle><stitle>IKT</stitle><date>2013-05</date><risdate>2013</risdate><spage>92</spage><epage>96</epage><pages>92-96</pages><eisbn>1467364908</eisbn><eisbn>9781467364904</eisbn><eisbn>1467364894</eisbn><eisbn>9781467364898</eisbn><abstract>Host Intrusion detection systems (HIDS) are increasingly emerging techniques for information security on host based applications. These systems should be designed to prevent unauthorized access of system resources and data. Many intelligent learning techniques are currently being applied to the large volumes of data for the construction of an efficient host intrusion detection system. This paper represents a hybrid approach for modeling HIDS combines anomaly, misuse detection, based on two-layer Genetic algorithm and neural network which uses simple data mining techniques to process the web application traffics. Two-layer Genetic algorithm and neural network are applied respectively as anomaly and misuse detection. Suspicious intrusions can be traced back to its original source. The proposed model is able to detect critical vulnerabilities based on Open Web Application Security Project (OWASP).</abstract><pub>IEEE</pub><doi>10.1109/IKT.2013.6620045</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1467364908
ispartof The 5th Conference on Information and Knowledge Technology, 2013, p.92-96
issn
language eng
recordid cdi_ieee_primary_6620045
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Classification algorithms
Data mining
Genetic algorithm
Genetic algorithms
Host Intrusion Detection System (HIDS)
Intrusion detection
neural network
Neural networks
Web application attacks
title A hybrid intelligent HIDS model using two-layer genetic algorithm and neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20intelligent%20HIDS%20model%20using%20two-layer%20genetic%20algorithm%20and%20neural%20network&rft.btitle=The%205th%20Conference%20on%20Information%20and%20Knowledge%20Technology&rft.au=Torkaman,%20Atefeh&rft.date=2013-05&rft.spage=92&rft.epage=96&rft.pages=92-96&rft_id=info:doi/10.1109/IKT.2013.6620045&rft_dat=%3Cieee_6IE%3E6620045%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467364908&rft.eisbn_list=9781467364904&rft.eisbn_list=1467364894&rft.eisbn_list=9781467364898&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6620045&rfr_iscdi=true