Speeding up Viola-Jones algorithm using multi-Core GPU implementation
Graphic Processing Units (GPUs) offer cheap and high-performance computation capabilities by offloading compute-intensive portions of the application to the GPU, while the remainder of the code still runs on a CPU. This paper introduces an multi-GPU CUDA implementation of training of object detectio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 812 |
---|---|
container_issue | |
container_start_page | 808 |
container_title | |
container_volume | |
creator | Masek, Jan Burget, Radim Uher, Vaclav Guney, Selda |
description | Graphic Processing Units (GPUs) offer cheap and high-performance computation capabilities by offloading compute-intensive portions of the application to the GPU, while the remainder of the code still runs on a CPU. This paper introduces an multi-GPU CUDA implementation of training of object detection using Viola-Jones algorithm that has accelerated of two the most time consuming operations in training process by using two dual-core NVIDIA GeForce GTX 690. When compared to single thread implementation on Intel Core i7 3770 with 3.7 GHz frequency, the first accelerated part of training process was speeded up 151 times and the second accelerated part was speeded up 124 times using two dual-core GPUs. This paper examines overall computational time of the Viola-Jones training process with the use of: one core CPU, one GPU, two GPUs, 3 GPUs and 4GPUs. Trained detector was applied on testing set containing real world images. |
doi_str_mv | 10.1109/TSP.2013.6614050 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6614050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6614050</ieee_id><sourcerecordid>6614050</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-52b46ada77b4e1f0b9c6b94a289fe7a720b9002ee00aa849c8976da3d9bb94f63</originalsourceid><addsrcrecordid>eNpVj81Lw0AUxFdEUGrugpf9BxLfbra7eUcJtSoFC41ey9vmpa7ki3wc_O-t2IunYZgfw4wQdwoSpQAfit020aDSxFplYAkXIkKXKeMQwYAxl_-8hmsRjeMXACjnNLjsRqx2PXMZ2qOce_kRupri167lUVJ97IYwfTZyHn_jZq6nEOfdwHK9fZeh6WtuuJ1oCl17K64qqkeOzroQxdOqyJ_jzdv6JX_cxAFhipfaG0slOecNqwo8HqxHQzrDih2dFnkE0MwARJnBQ4bOlpSW6E9YZdOFuP-rDcy874fQ0PC9P39PfwCkckyl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speeding up Viola-Jones algorithm using multi-Core GPU implementation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Masek, Jan ; Burget, Radim ; Uher, Vaclav ; Guney, Selda</creator><creatorcontrib>Masek, Jan ; Burget, Radim ; Uher, Vaclav ; Guney, Selda</creatorcontrib><description>Graphic Processing Units (GPUs) offer cheap and high-performance computation capabilities by offloading compute-intensive portions of the application to the GPU, while the remainder of the code still runs on a CPU. This paper introduces an multi-GPU CUDA implementation of training of object detection using Viola-Jones algorithm that has accelerated of two the most time consuming operations in training process by using two dual-core NVIDIA GeForce GTX 690. When compared to single thread implementation on Intel Core i7 3770 with 3.7 GHz frequency, the first accelerated part of training process was speeded up 151 times and the second accelerated part was speeded up 124 times using two dual-core GPUs. This paper examines overall computational time of the Viola-Jones training process with the use of: one core CPU, one GPU, two GPUs, 3 GPUs and 4GPUs. Trained detector was applied on testing set containing real world images.</description><identifier>ISBN: 9781479904020</identifier><identifier>ISBN: 1479904023</identifier><identifier>EISBN: 9781479904044</identifier><identifier>EISBN: 1479904031</identifier><identifier>EISBN: 147990404X</identifier><identifier>EISBN: 9781479904037</identifier><identifier>DOI: 10.1109/TSP.2013.6614050</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; CUDA ; Detectors ; Face ; face detection ; Graphics processing units ; high performance computing ; Instruction sets ; multi-GPU ; Testing ; Training ; Viola-Jones detector</subject><ispartof>2013 36th International Conference on Telecommunications and Signal Processing (TSP), 2013, p.808-812</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6614050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6614050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Masek, Jan</creatorcontrib><creatorcontrib>Burget, Radim</creatorcontrib><creatorcontrib>Uher, Vaclav</creatorcontrib><creatorcontrib>Guney, Selda</creatorcontrib><title>Speeding up Viola-Jones algorithm using multi-Core GPU implementation</title><title>2013 36th International Conference on Telecommunications and Signal Processing (TSP)</title><addtitle>TSP</addtitle><description>Graphic Processing Units (GPUs) offer cheap and high-performance computation capabilities by offloading compute-intensive portions of the application to the GPU, while the remainder of the code still runs on a CPU. This paper introduces an multi-GPU CUDA implementation of training of object detection using Viola-Jones algorithm that has accelerated of two the most time consuming operations in training process by using two dual-core NVIDIA GeForce GTX 690. When compared to single thread implementation on Intel Core i7 3770 with 3.7 GHz frequency, the first accelerated part of training process was speeded up 151 times and the second accelerated part was speeded up 124 times using two dual-core GPUs. This paper examines overall computational time of the Viola-Jones training process with the use of: one core CPU, one GPU, two GPUs, 3 GPUs and 4GPUs. Trained detector was applied on testing set containing real world images.</description><subject>Acceleration</subject><subject>CUDA</subject><subject>Detectors</subject><subject>Face</subject><subject>face detection</subject><subject>Graphics processing units</subject><subject>high performance computing</subject><subject>Instruction sets</subject><subject>multi-GPU</subject><subject>Testing</subject><subject>Training</subject><subject>Viola-Jones detector</subject><isbn>9781479904020</isbn><isbn>1479904023</isbn><isbn>9781479904044</isbn><isbn>1479904031</isbn><isbn>147990404X</isbn><isbn>9781479904037</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81Lw0AUxFdEUGrugpf9BxLfbra7eUcJtSoFC41ey9vmpa7ki3wc_O-t2IunYZgfw4wQdwoSpQAfit020aDSxFplYAkXIkKXKeMQwYAxl_-8hmsRjeMXACjnNLjsRqx2PXMZ2qOce_kRupri167lUVJ97IYwfTZyHn_jZq6nEOfdwHK9fZeh6WtuuJ1oCl17K64qqkeOzroQxdOqyJ_jzdv6JX_cxAFhipfaG0slOecNqwo8HqxHQzrDih2dFnkE0MwARJnBQ4bOlpSW6E9YZdOFuP-rDcy874fQ0PC9P39PfwCkckyl</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Masek, Jan</creator><creator>Burget, Radim</creator><creator>Uher, Vaclav</creator><creator>Guney, Selda</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>Speeding up Viola-Jones algorithm using multi-Core GPU implementation</title><author>Masek, Jan ; Burget, Radim ; Uher, Vaclav ; Guney, Selda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-52b46ada77b4e1f0b9c6b94a289fe7a720b9002ee00aa849c8976da3d9bb94f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>CUDA</topic><topic>Detectors</topic><topic>Face</topic><topic>face detection</topic><topic>Graphics processing units</topic><topic>high performance computing</topic><topic>Instruction sets</topic><topic>multi-GPU</topic><topic>Testing</topic><topic>Training</topic><topic>Viola-Jones detector</topic><toplevel>online_resources</toplevel><creatorcontrib>Masek, Jan</creatorcontrib><creatorcontrib>Burget, Radim</creatorcontrib><creatorcontrib>Uher, Vaclav</creatorcontrib><creatorcontrib>Guney, Selda</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Masek, Jan</au><au>Burget, Radim</au><au>Uher, Vaclav</au><au>Guney, Selda</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speeding up Viola-Jones algorithm using multi-Core GPU implementation</atitle><btitle>2013 36th International Conference on Telecommunications and Signal Processing (TSP)</btitle><stitle>TSP</stitle><date>2013-07</date><risdate>2013</risdate><spage>808</spage><epage>812</epage><pages>808-812</pages><isbn>9781479904020</isbn><isbn>1479904023</isbn><eisbn>9781479904044</eisbn><eisbn>1479904031</eisbn><eisbn>147990404X</eisbn><eisbn>9781479904037</eisbn><abstract>Graphic Processing Units (GPUs) offer cheap and high-performance computation capabilities by offloading compute-intensive portions of the application to the GPU, while the remainder of the code still runs on a CPU. This paper introduces an multi-GPU CUDA implementation of training of object detection using Viola-Jones algorithm that has accelerated of two the most time consuming operations in training process by using two dual-core NVIDIA GeForce GTX 690. When compared to single thread implementation on Intel Core i7 3770 with 3.7 GHz frequency, the first accelerated part of training process was speeded up 151 times and the second accelerated part was speeded up 124 times using two dual-core GPUs. This paper examines overall computational time of the Viola-Jones training process with the use of: one core CPU, one GPU, two GPUs, 3 GPUs and 4GPUs. Trained detector was applied on testing set containing real world images.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2013.6614050</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781479904020 |
ispartof | 2013 36th International Conference on Telecommunications and Signal Processing (TSP), 2013, p.808-812 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6614050 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration CUDA Detectors Face face detection Graphics processing units high performance computing Instruction sets multi-GPU Testing Training Viola-Jones detector |
title | Speeding up Viola-Jones algorithm using multi-Core GPU implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speeding%20up%20Viola-Jones%20algorithm%20using%20multi-Core%20GPU%20implementation&rft.btitle=2013%2036th%20International%20Conference%20on%20Telecommunications%20and%20Signal%20Processing%20(TSP)&rft.au=Masek,%20Jan&rft.date=2013-07&rft.spage=808&rft.epage=812&rft.pages=808-812&rft.isbn=9781479904020&rft.isbn_list=1479904023&rft_id=info:doi/10.1109/TSP.2013.6614050&rft_dat=%3Cieee_6IE%3E6614050%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479904044&rft.eisbn_list=1479904031&rft.eisbn_list=147990404X&rft.eisbn_list=9781479904037&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6614050&rfr_iscdi=true |