Error event simulation for HMM tracking algorithms using importance sampling

Importance sampling is a technique for speeding up Monte Carlo (MC) simulations. The fundamental idea is to use a different simulation distribution to increase the relative frequency of "important" events and then weight the observed data in order to obtain an unbiased estimate of the para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1998-03, Vol.46 (3), p.720-736
Hauptverfasser: Arulampalam, M.S., Evans, R.J., Letaief, K.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 736
container_issue 3
container_start_page 720
container_title IEEE transactions on signal processing
container_volume 46
creator Arulampalam, M.S.
Evans, R.J.
Letaief, K.B.
description Importance sampling is a technique for speeding up Monte Carlo (MC) simulations. The fundamental idea is to use a different simulation distribution to increase the relative frequency of "important" events and then weight the observed data in order to obtain an unbiased estimate of the parameter of interest. This estimate often requires orders-of-magnitude fewer simulation trials than ordinary MC simulations to obtain the same specified precision. We present an importance sampling technique applicable to error event simulation of hidden Markov model (HMM) tracking algorithms. The computational savings possible with the use of this technique are demonstrated both analytically and using simulation results for a specific HMM tracking algorithm.
doi_str_mv 10.1109/78.661338
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_661338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>661338</ieee_id><sourcerecordid>28568287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-1edbd7bbcd9af0c11efc4fb69fcb00dfefd2e7336374f533a1b02364d19365163</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxYMouK4evHrqQQQPXTNJm7RHWVZX2MWLgreSppM1mn6YtIL_vV267GmGN7958B4h10AXADR_kNlCCOA8OyEzyBOIaSLF6bjTlMdpJj_OyUUIX5RCkuRiRjYr71sf4S82fRRsPTjV27aJzCiut9uo90p_22YXKbdrve0_6xANYS_Yumt9rxqNUVB150btkpwZ5QJeHeacvD-t3pbrePP6_LJ83MSaU9HHgFVZybLUVa4M1QBodGJKkRtdUloZNBVDybngMjEp5wpKyrhIKsi5SEHwObmbfDvf_gwY-qK2QaNzqsF2CAXLUpGxTI7g_QRq34bg0RSdt7XyfwXQYt9XIbNi6mtkbw-mKmjljB-j2XB8YIxCztiI3UyYRcTj9eDxD4Ifc2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28568287</pqid></control><display><type>article</type><title>Error event simulation for HMM tracking algorithms using importance sampling</title><source>IEEE Electronic Library (IEL)</source><creator>Arulampalam, M.S. ; Evans, R.J. ; Letaief, K.B.</creator><creatorcontrib>Arulampalam, M.S. ; Evans, R.J. ; Letaief, K.B.</creatorcontrib><description>Importance sampling is a technique for speeding up Monte Carlo (MC) simulations. The fundamental idea is to use a different simulation distribution to increase the relative frequency of "important" events and then weight the observed data in order to obtain an unbiased estimate of the parameter of interest. This estimate often requires orders-of-magnitude fewer simulation trials than ordinary MC simulations to obtain the same specified precision. We present an importance sampling technique applicable to error event simulation of hidden Markov model (HMM) tracking algorithms. The computational savings possible with the use of this technique are demonstrated both analytically and using simulation results for a specific HMM tracking algorithm.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.661338</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analytical models ; Applied sciences ; Computational Intelligence Society ; Computational modeling ; Detection, estimation, filtering, equalization, prediction ; Digital communication ; Discrete event simulation ; Exact sciences and technology ; Frequency estimation ; Hidden Markov models ; Information, signal and communications theory ; Monte Carlo methods ; Parameter estimation ; Signal and communications theory ; Signal, noise ; Standards development ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1998-03, Vol.46 (3), p.720-736</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-1edbd7bbcd9af0c11efc4fb69fcb00dfefd2e7336374f533a1b02364d19365163</citedby><cites>FETCH-LOGICAL-c306t-1edbd7bbcd9af0c11efc4fb69fcb00dfefd2e7336374f533a1b02364d19365163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/661338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/661338$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2201922$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arulampalam, M.S.</creatorcontrib><creatorcontrib>Evans, R.J.</creatorcontrib><creatorcontrib>Letaief, K.B.</creatorcontrib><title>Error event simulation for HMM tracking algorithms using importance sampling</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Importance sampling is a technique for speeding up Monte Carlo (MC) simulations. The fundamental idea is to use a different simulation distribution to increase the relative frequency of "important" events and then weight the observed data in order to obtain an unbiased estimate of the parameter of interest. This estimate often requires orders-of-magnitude fewer simulation trials than ordinary MC simulations to obtain the same specified precision. We present an importance sampling technique applicable to error event simulation of hidden Markov model (HMM) tracking algorithms. The computational savings possible with the use of this technique are demonstrated both analytically and using simulation results for a specific HMM tracking algorithm.</description><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Computational Intelligence Society</subject><subject>Computational modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital communication</subject><subject>Discrete event simulation</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Hidden Markov models</subject><subject>Information, signal and communications theory</subject><subject>Monte Carlo methods</subject><subject>Parameter estimation</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Standards development</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LxDAQxYMouK4evHrqQQQPXTNJm7RHWVZX2MWLgreSppM1mn6YtIL_vV267GmGN7958B4h10AXADR_kNlCCOA8OyEzyBOIaSLF6bjTlMdpJj_OyUUIX5RCkuRiRjYr71sf4S82fRRsPTjV27aJzCiut9uo90p_22YXKbdrve0_6xANYS_Yumt9rxqNUVB150btkpwZ5QJeHeacvD-t3pbrePP6_LJ83MSaU9HHgFVZybLUVa4M1QBodGJKkRtdUloZNBVDybngMjEp5wpKyrhIKsi5SEHwObmbfDvf_gwY-qK2QaNzqsF2CAXLUpGxTI7g_QRq34bg0RSdt7XyfwXQYt9XIbNi6mtkbw-mKmjljB-j2XB8YIxCztiI3UyYRcTj9eDxD4Ifc2E</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Arulampalam, M.S.</creator><creator>Evans, R.J.</creator><creator>Letaief, K.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980301</creationdate><title>Error event simulation for HMM tracking algorithms using importance sampling</title><author>Arulampalam, M.S. ; Evans, R.J. ; Letaief, K.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-1edbd7bbcd9af0c11efc4fb69fcb00dfefd2e7336374f533a1b02364d19365163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Computational Intelligence Society</topic><topic>Computational modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital communication</topic><topic>Discrete event simulation</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Hidden Markov models</topic><topic>Information, signal and communications theory</topic><topic>Monte Carlo methods</topic><topic>Parameter estimation</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Standards development</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arulampalam, M.S.</creatorcontrib><creatorcontrib>Evans, R.J.</creatorcontrib><creatorcontrib>Letaief, K.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arulampalam, M.S.</au><au>Evans, R.J.</au><au>Letaief, K.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error event simulation for HMM tracking algorithms using importance sampling</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1998-03-01</date><risdate>1998</risdate><volume>46</volume><issue>3</issue><spage>720</spage><epage>736</epage><pages>720-736</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Importance sampling is a technique for speeding up Monte Carlo (MC) simulations. The fundamental idea is to use a different simulation distribution to increase the relative frequency of "important" events and then weight the observed data in order to obtain an unbiased estimate of the parameter of interest. This estimate often requires orders-of-magnitude fewer simulation trials than ordinary MC simulations to obtain the same specified precision. We present an importance sampling technique applicable to error event simulation of hidden Markov model (HMM) tracking algorithms. The computational savings possible with the use of this technique are demonstrated both analytically and using simulation results for a specific HMM tracking algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.661338</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1998-03, Vol.46 (3), p.720-736
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_661338
source IEEE Electronic Library (IEL)
subjects Analytical models
Applied sciences
Computational Intelligence Society
Computational modeling
Detection, estimation, filtering, equalization, prediction
Digital communication
Discrete event simulation
Exact sciences and technology
Frequency estimation
Hidden Markov models
Information, signal and communications theory
Monte Carlo methods
Parameter estimation
Signal and communications theory
Signal, noise
Standards development
Telecommunications and information theory
title Error event simulation for HMM tracking algorithms using importance sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20event%20simulation%20for%20HMM%20tracking%20algorithms%20using%20importance%20sampling&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Arulampalam,%20M.S.&rft.date=1998-03-01&rft.volume=46&rft.issue=3&rft.spage=720&rft.epage=736&rft.pages=720-736&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.661338&rft_dat=%3Cproquest_RIE%3E28568287%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28568287&rft_id=info:pmid/&rft_ieee_id=661338&rfr_iscdi=true