Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning

Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013-01, Vol.2013, p.5622-5625
Hauptverfasser: Ledochowitsch, P., Koralek, A. C., Moses, D., Carmena, J. M., Maharbiz, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5625
container_issue
container_start_page 5622
container_title 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
container_volume 2013
creator Ledochowitsch, P.
Koralek, A. C.
Moses, D.
Carmena, J. M.
Maharbiz, M. M.
description Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes
doi_str_mv 10.1109/EMBC.2013.6610825
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6610825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6610825</ieee_id><sourcerecordid>24111012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-dd127590b84037be9b3ac94a2b3b4ab5c319a18e5cd47471f222530c4913f7853</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhaMottY-gAiSF5gxN7-TpS1VCy0uVOiuJJlMOzIzGeZn4dsbaHV1D5zvHLgHoXsgKQDRT6vtYplSAiyVEkhGxQW6BS6UIhSkvkRTECJLuARxFTXRPJGZ2k3QvO-_CSGgpGSU3aAJ5RALgU7R7mO0SV3jYmzcUIbGVDj3LoxtVTYHHArsK--GLrjQDaWLbl8eItTj4diF8XDErgq9z5MqhBYvtmtcedM1MXuHrovI-fn5ztDXy-pz-ZZs3l_Xy-dN4jiIIclzoEpoYjNOmLJeW2ac5oZaZrmxwjHQBjIvXM4VV1BQSgUjjmtghcoEm6HHU2872trn-7Yra9P97P9ejMDDCSi99__2eUD2C6XwX1w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ledochowitsch, P. ; Koralek, A. C. ; Moses, D. ; Carmena, J. M. ; Maharbiz, M. M.</creator><creatorcontrib>Ledochowitsch, P. ; Koralek, A. C. ; Moses, D. ; Carmena, J. M. ; Maharbiz, M. M.</creatorcontrib><description>Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes &lt;; 1mm apart can be decoupled through closed-loop BMI learning. To this end, we fabricated custom, flexible microelectrode arrays with 200 μm electrode pitch and increased the effective electrode area by electrodeposition of platinum black to reduce thermal noise. We have chronically implanted these arrays subdurally over primary motor cortex (M1) of 5 male Long-Evans Rats and monitored the electrochemical electrode impedance in vivo to assess the stability of these neural interfaces. We successfully trained the rodents to perform a one-dimensional center-out task using closed-loop brain control to adjust the pitch of an auditory cursor by differentially modulating high gamma (70-110 Hz) power on pairs of surface microelectrodes that were separated by less than 1 mm.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6610825</identifier><identifier>PMID: 24111012</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Artificial Intelligence ; Behavior, Animal - physiology ; Brain - physiopathology ; Brain-Computer Interfaces ; Electric Impedance ; Electric potential ; Electrodes, Implanted ; Electroencephalography ; Feedback ; Impedance ; Male ; Microelectrodes ; Motor Cortex - physiology ; Platinum ; Rats ; Rats, Long-Evans ; Signal Processing, Computer-Assisted - instrumentation ; Sound ; Subdural Space ; Surface impedance</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013-01, Vol.2013, p.5622-5625</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-dd127590b84037be9b3ac94a2b3b4ab5c319a18e5cd47471f222530c4913f7853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6610825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6610825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24111012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ledochowitsch, P.</creatorcontrib><creatorcontrib>Koralek, A. C.</creatorcontrib><creatorcontrib>Moses, D.</creatorcontrib><creatorcontrib>Carmena, J. M.</creatorcontrib><creatorcontrib>Maharbiz, M. M.</creatorcontrib><title>Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes &lt;; 1mm apart can be decoupled through closed-loop BMI learning. To this end, we fabricated custom, flexible microelectrode arrays with 200 μm electrode pitch and increased the effective electrode area by electrodeposition of platinum black to reduce thermal noise. We have chronically implanted these arrays subdurally over primary motor cortex (M1) of 5 male Long-Evans Rats and monitored the electrochemical electrode impedance in vivo to assess the stability of these neural interfaces. We successfully trained the rodents to perform a one-dimensional center-out task using closed-loop brain control to adjust the pitch of an auditory cursor by differentially modulating high gamma (70-110 Hz) power on pairs of surface microelectrodes that were separated by less than 1 mm.</description><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Behavior, Animal - physiology</subject><subject>Brain - physiopathology</subject><subject>Brain-Computer Interfaces</subject><subject>Electric Impedance</subject><subject>Electric potential</subject><subject>Electrodes, Implanted</subject><subject>Electroencephalography</subject><subject>Feedback</subject><subject>Impedance</subject><subject>Male</subject><subject>Microelectrodes</subject><subject>Motor Cortex - physiology</subject><subject>Platinum</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Sound</subject><subject>Subdural Space</subject><subject>Surface impedance</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM1KAzEUhaMottY-gAiSF5gxN7-TpS1VCy0uVOiuJJlMOzIzGeZn4dsbaHV1D5zvHLgHoXsgKQDRT6vtYplSAiyVEkhGxQW6BS6UIhSkvkRTECJLuARxFTXRPJGZ2k3QvO-_CSGgpGSU3aAJ5RALgU7R7mO0SV3jYmzcUIbGVDj3LoxtVTYHHArsK--GLrjQDaWLbl8eItTj4diF8XDErgq9z5MqhBYvtmtcedM1MXuHrovI-fn5ztDXy-pz-ZZs3l_Xy-dN4jiIIclzoEpoYjNOmLJeW2ac5oZaZrmxwjHQBjIvXM4VV1BQSgUjjmtghcoEm6HHU2872trn-7Yra9P97P9ejMDDCSi99__2eUD2C6XwX1w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Ledochowitsch, P.</creator><creator>Koralek, A. C.</creator><creator>Moses, D.</creator><creator>Carmena, J. M.</creator><creator>Maharbiz, M. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130101</creationdate><title>Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning</title><author>Ledochowitsch, P. ; Koralek, A. C. ; Moses, D. ; Carmena, J. M. ; Maharbiz, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-dd127590b84037be9b3ac94a2b3b4ab5c319a18e5cd47471f222530c4913f7853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Behavior, Animal - physiology</topic><topic>Brain - physiopathology</topic><topic>Brain-Computer Interfaces</topic><topic>Electric Impedance</topic><topic>Electric potential</topic><topic>Electrodes, Implanted</topic><topic>Electroencephalography</topic><topic>Feedback</topic><topic>Impedance</topic><topic>Male</topic><topic>Microelectrodes</topic><topic>Motor Cortex - physiology</topic><topic>Platinum</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Sound</topic><topic>Subdural Space</topic><topic>Surface impedance</topic><toplevel>online_resources</toplevel><creatorcontrib>Ledochowitsch, P.</creatorcontrib><creatorcontrib>Koralek, A. C.</creatorcontrib><creatorcontrib>Moses, D.</creatorcontrib><creatorcontrib>Carmena, J. M.</creatorcontrib><creatorcontrib>Maharbiz, M. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ledochowitsch, P.</au><au>Koralek, A. C.</au><au>Moses, D.</au><au>Carmena, J. M.</au><au>Maharbiz, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning</atitle><jtitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><spage>5622</spage><epage>5625</epage><pages>5622-5625</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes &lt;; 1mm apart can be decoupled through closed-loop BMI learning. To this end, we fabricated custom, flexible microelectrode arrays with 200 μm electrode pitch and increased the effective electrode area by electrodeposition of platinum black to reduce thermal noise. We have chronically implanted these arrays subdurally over primary motor cortex (M1) of 5 male Long-Evans Rats and monitored the electrochemical electrode impedance in vivo to assess the stability of these neural interfaces. We successfully trained the rodents to perform a one-dimensional center-out task using closed-loop brain control to adjust the pitch of an auditory cursor by differentially modulating high gamma (70-110 Hz) power on pairs of surface microelectrodes that were separated by less than 1 mm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24111012</pmid><doi>10.1109/EMBC.2013.6610825</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013-01, Vol.2013, p.5622-5625
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6610825
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Animals
Artificial Intelligence
Behavior, Animal - physiology
Brain - physiopathology
Brain-Computer Interfaces
Electric Impedance
Electric potential
Electrodes, Implanted
Electroencephalography
Feedback
Impedance
Male
Microelectrodes
Motor Cortex - physiology
Platinum
Rats
Rats, Long-Evans
Signal Processing, Computer-Assisted - instrumentation
Sound
Subdural Space
Surface impedance
title Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-mm%20functional%20decoupling%20of%20electrocortical%20signals%20through%20closed-loop%20BMI%20learning&rft.jtitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Ledochowitsch,%20P.&rft.date=2013-01-01&rft.volume=2013&rft.spage=5622&rft.epage=5625&rft.pages=5622-5625&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6610825&rft_dat=%3Cpubmed_6IE%3E24111012%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24111012&rft_ieee_id=6610825&rfr_iscdi=true