Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning
Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes
Gespeichert in:
Veröffentlicht in: | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013-01, Vol.2013, p.5622-5625 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5625 |
---|---|
container_issue | |
container_start_page | 5622 |
container_title | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
container_volume | 2013 |
creator | Ledochowitsch, P. Koralek, A. C. Moses, D. Carmena, J. M. Maharbiz, M. M. |
description | Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes |
doi_str_mv | 10.1109/EMBC.2013.6610825 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6610825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6610825</ieee_id><sourcerecordid>24111012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-dd127590b84037be9b3ac94a2b3b4ab5c319a18e5cd47471f222530c4913f7853</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhaMottY-gAiSF5gxN7-TpS1VCy0uVOiuJJlMOzIzGeZn4dsbaHV1D5zvHLgHoXsgKQDRT6vtYplSAiyVEkhGxQW6BS6UIhSkvkRTECJLuARxFTXRPJGZ2k3QvO-_CSGgpGSU3aAJ5RALgU7R7mO0SV3jYmzcUIbGVDj3LoxtVTYHHArsK--GLrjQDaWLbl8eItTj4diF8XDErgq9z5MqhBYvtmtcedM1MXuHrovI-fn5ztDXy-pz-ZZs3l_Xy-dN4jiIIclzoEpoYjNOmLJeW2ac5oZaZrmxwjHQBjIvXM4VV1BQSgUjjmtghcoEm6HHU2872trn-7Yra9P97P9ejMDDCSi99__2eUD2C6XwX1w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ledochowitsch, P. ; Koralek, A. C. ; Moses, D. ; Carmena, J. M. ; Maharbiz, M. M.</creator><creatorcontrib>Ledochowitsch, P. ; Koralek, A. C. ; Moses, D. ; Carmena, J. M. ; Maharbiz, M. M.</creatorcontrib><description>Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes <; 1mm apart can be decoupled through closed-loop BMI learning. To this end, we fabricated custom, flexible microelectrode arrays with 200 μm electrode pitch and increased the effective electrode area by electrodeposition of platinum black to reduce thermal noise. We have chronically implanted these arrays subdurally over primary motor cortex (M1) of 5 male Long-Evans Rats and monitored the electrochemical electrode impedance in vivo to assess the stability of these neural interfaces. We successfully trained the rodents to perform a one-dimensional center-out task using closed-loop brain control to adjust the pitch of an auditory cursor by differentially modulating high gamma (70-110 Hz) power on pairs of surface microelectrodes that were separated by less than 1 mm.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6610825</identifier><identifier>PMID: 24111012</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Artificial Intelligence ; Behavior, Animal - physiology ; Brain - physiopathology ; Brain-Computer Interfaces ; Electric Impedance ; Electric potential ; Electrodes, Implanted ; Electroencephalography ; Feedback ; Impedance ; Male ; Microelectrodes ; Motor Cortex - physiology ; Platinum ; Rats ; Rats, Long-Evans ; Signal Processing, Computer-Assisted - instrumentation ; Sound ; Subdural Space ; Surface impedance</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013-01, Vol.2013, p.5622-5625</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-dd127590b84037be9b3ac94a2b3b4ab5c319a18e5cd47471f222530c4913f7853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6610825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6610825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24111012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ledochowitsch, P.</creatorcontrib><creatorcontrib>Koralek, A. C.</creatorcontrib><creatorcontrib>Moses, D.</creatorcontrib><creatorcontrib>Carmena, J. M.</creatorcontrib><creatorcontrib>Maharbiz, M. M.</creatorcontrib><title>Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes <; 1mm apart can be decoupled through closed-loop BMI learning. To this end, we fabricated custom, flexible microelectrode arrays with 200 μm electrode pitch and increased the effective electrode area by electrodeposition of platinum black to reduce thermal noise. We have chronically implanted these arrays subdurally over primary motor cortex (M1) of 5 male Long-Evans Rats and monitored the electrochemical electrode impedance in vivo to assess the stability of these neural interfaces. We successfully trained the rodents to perform a one-dimensional center-out task using closed-loop brain control to adjust the pitch of an auditory cursor by differentially modulating high gamma (70-110 Hz) power on pairs of surface microelectrodes that were separated by less than 1 mm.</description><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Behavior, Animal - physiology</subject><subject>Brain - physiopathology</subject><subject>Brain-Computer Interfaces</subject><subject>Electric Impedance</subject><subject>Electric potential</subject><subject>Electrodes, Implanted</subject><subject>Electroencephalography</subject><subject>Feedback</subject><subject>Impedance</subject><subject>Male</subject><subject>Microelectrodes</subject><subject>Motor Cortex - physiology</subject><subject>Platinum</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Sound</subject><subject>Subdural Space</subject><subject>Surface impedance</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM1KAzEUhaMottY-gAiSF5gxN7-TpS1VCy0uVOiuJJlMOzIzGeZn4dsbaHV1D5zvHLgHoXsgKQDRT6vtYplSAiyVEkhGxQW6BS6UIhSkvkRTECJLuARxFTXRPJGZ2k3QvO-_CSGgpGSU3aAJ5RALgU7R7mO0SV3jYmzcUIbGVDj3LoxtVTYHHArsK--GLrjQDaWLbl8eItTj4diF8XDErgq9z5MqhBYvtmtcedM1MXuHrovI-fn5ztDXy-pz-ZZs3l_Xy-dN4jiIIclzoEpoYjNOmLJeW2ac5oZaZrmxwjHQBjIvXM4VV1BQSgUjjmtghcoEm6HHU2872trn-7Yra9P97P9ejMDDCSi99__2eUD2C6XwX1w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Ledochowitsch, P.</creator><creator>Koralek, A. C.</creator><creator>Moses, D.</creator><creator>Carmena, J. M.</creator><creator>Maharbiz, M. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130101</creationdate><title>Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning</title><author>Ledochowitsch, P. ; Koralek, A. C. ; Moses, D. ; Carmena, J. M. ; Maharbiz, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-dd127590b84037be9b3ac94a2b3b4ab5c319a18e5cd47471f222530c4913f7853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Behavior, Animal - physiology</topic><topic>Brain - physiopathology</topic><topic>Brain-Computer Interfaces</topic><topic>Electric Impedance</topic><topic>Electric potential</topic><topic>Electrodes, Implanted</topic><topic>Electroencephalography</topic><topic>Feedback</topic><topic>Impedance</topic><topic>Male</topic><topic>Microelectrodes</topic><topic>Motor Cortex - physiology</topic><topic>Platinum</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Sound</topic><topic>Subdural Space</topic><topic>Surface impedance</topic><toplevel>online_resources</toplevel><creatorcontrib>Ledochowitsch, P.</creatorcontrib><creatorcontrib>Koralek, A. C.</creatorcontrib><creatorcontrib>Moses, D.</creatorcontrib><creatorcontrib>Carmena, J. M.</creatorcontrib><creatorcontrib>Maharbiz, M. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ledochowitsch, P.</au><au>Koralek, A. C.</au><au>Moses, D.</au><au>Carmena, J. M.</au><au>Maharbiz, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning</atitle><jtitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><spage>5622</spage><epage>5625</epage><pages>5622-5625</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>Volitional control of neural activity lies at the heart of the Brain-Machine Interface (BMI) paradigm. In this work we investigated if subdural field potentials recorded by electrodes <; 1mm apart can be decoupled through closed-loop BMI learning. To this end, we fabricated custom, flexible microelectrode arrays with 200 μm electrode pitch and increased the effective electrode area by electrodeposition of platinum black to reduce thermal noise. We have chronically implanted these arrays subdurally over primary motor cortex (M1) of 5 male Long-Evans Rats and monitored the electrochemical electrode impedance in vivo to assess the stability of these neural interfaces. We successfully trained the rodents to perform a one-dimensional center-out task using closed-loop brain control to adjust the pitch of an auditory cursor by differentially modulating high gamma (70-110 Hz) power on pairs of surface microelectrodes that were separated by less than 1 mm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24111012</pmid><doi>10.1109/EMBC.2013.6610825</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013-01, Vol.2013, p.5622-5625 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6610825 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Animals Artificial Intelligence Behavior, Animal - physiology Brain - physiopathology Brain-Computer Interfaces Electric Impedance Electric potential Electrodes, Implanted Electroencephalography Feedback Impedance Male Microelectrodes Motor Cortex - physiology Platinum Rats Rats, Long-Evans Signal Processing, Computer-Assisted - instrumentation Sound Subdural Space Surface impedance |
title | Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-mm%20functional%20decoupling%20of%20electrocortical%20signals%20through%20closed-loop%20BMI%20learning&rft.jtitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Ledochowitsch,%20P.&rft.date=2013-01-01&rft.volume=2013&rft.spage=5622&rft.epage=5625&rft.pages=5622-5625&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6610825&rft_dat=%3Cpubmed_6IE%3E24111012%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24111012&rft_ieee_id=6610825&rfr_iscdi=true |