Respiration amplitude analysis for REM and NREM sleep classification
In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the e...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5020 |
---|---|
container_issue | |
container_start_page | 5017 |
container_title | |
container_volume | 2013 |
creator | Xi Long Foussier, Jerome Fonseca, Pedro Haakma, Reinder Aarts, Ronald M. |
description | In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen's Kappa coefficient to a value of κ = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features (κ of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities. |
doi_str_mv | 10.1109/EMBC.2013.6610675 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6610675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6610675</ieee_id><sourcerecordid>24110862</sourcerecordid><originalsourceid>FETCH-LOGICAL-i344t-e6f0fd443b32148e4913e78cf208266359d76e9b7726bade99cd4d5c5115045f3</originalsourceid><addsrcrecordid>eNo9UF1Lw0AQPEWxtfYHiCD5A4m395l71Bg_oFUoCr6VS24PTpI25NqH_vtGW33aYXdmmFlCroFmANTclfOHImMUeKYUUKXlCbkEIbWmDJQ5JWOQMk-FAnk2YGpEqnL9NSLTGL8ppaCV4oxfkBETg1-u2Jg8LjB2obebsF4ltu2asNk6TOzKNrsYYuLXfbIo58PCJW8_IDaIXVI3NsbgQ_0rvCLn3jYRp8c5IZ9P5Ufxks7en1-L-1kauBCbFJWn3gnBK85A5CgMcNR57RnN2RBNGqcVmkprpirr0JjaCSdrCSCpkJ5PyO3Bt9tWLbpl14fW9rvlX52BcHMgBET8Px-fxfe1RleD</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Respiration amplitude analysis for REM and NREM sleep classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xi Long ; Foussier, Jerome ; Fonseca, Pedro ; Haakma, Reinder ; Aarts, Ronald M.</creator><creatorcontrib>Xi Long ; Foussier, Jerome ; Fonseca, Pedro ; Haakma, Reinder ; Aarts, Ronald M.</creatorcontrib><description>In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen's Kappa coefficient to a value of κ = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features (κ of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6610675</identifier><identifier>PMID: 24110862</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Actigraphy ; Adult ; Algorithms ; Automatic Data Processing ; Discriminant Analysis ; Electrocardiography ; Feature extraction ; Female ; Healthy Volunteers ; Heart rate variability ; Humans ; Linear Models ; Male ; Member and Geographic Activities Board committees ; Polysomnography - methods ; Reproducibility of Results ; Respiration ; Signal Processing, Computer-Assisted ; Sleep - physiology ; Sleep apnea ; Sleep, REM - physiology ; Young Adult</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.5017-5020</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6610675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6610675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24110862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xi Long</creatorcontrib><creatorcontrib>Foussier, Jerome</creatorcontrib><creatorcontrib>Fonseca, Pedro</creatorcontrib><creatorcontrib>Haakma, Reinder</creatorcontrib><creatorcontrib>Aarts, Ronald M.</creatorcontrib><title>Respiration amplitude analysis for REM and NREM sleep classification</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen's Kappa coefficient to a value of κ = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features (κ of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities.</description><subject>Accuracy</subject><subject>Actigraphy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Automatic Data Processing</subject><subject>Discriminant Analysis</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Healthy Volunteers</subject><subject>Heart rate variability</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Male</subject><subject>Member and Geographic Activities Board committees</subject><subject>Polysomnography - methods</subject><subject>Reproducibility of Results</subject><subject>Respiration</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sleep - physiology</subject><subject>Sleep apnea</subject><subject>Sleep, REM - physiology</subject><subject>Young Adult</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9UF1Lw0AQPEWxtfYHiCD5A4m395l71Bg_oFUoCr6VS24PTpI25NqH_vtGW33aYXdmmFlCroFmANTclfOHImMUeKYUUKXlCbkEIbWmDJQ5JWOQMk-FAnk2YGpEqnL9NSLTGL8ppaCV4oxfkBETg1-u2Jg8LjB2obebsF4ltu2asNk6TOzKNrsYYuLXfbIo58PCJW8_IDaIXVI3NsbgQ_0rvCLn3jYRp8c5IZ9P5Ufxks7en1-L-1kauBCbFJWn3gnBK85A5CgMcNR57RnN2RBNGqcVmkprpirr0JjaCSdrCSCpkJ5PyO3Bt9tWLbpl14fW9rvlX52BcHMgBET8Px-fxfe1RleD</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Xi Long</creator><creator>Foussier, Jerome</creator><creator>Fonseca, Pedro</creator><creator>Haakma, Reinder</creator><creator>Aarts, Ronald M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130101</creationdate><title>Respiration amplitude analysis for REM and NREM sleep classification</title><author>Xi Long ; Foussier, Jerome ; Fonseca, Pedro ; Haakma, Reinder ; Aarts, Ronald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i344t-e6f0fd443b32148e4913e78cf208266359d76e9b7726bade99cd4d5c5115045f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Actigraphy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Automatic Data Processing</topic><topic>Discriminant Analysis</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Healthy Volunteers</topic><topic>Heart rate variability</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Male</topic><topic>Member and Geographic Activities Board committees</topic><topic>Polysomnography - methods</topic><topic>Reproducibility of Results</topic><topic>Respiration</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sleep - physiology</topic><topic>Sleep apnea</topic><topic>Sleep, REM - physiology</topic><topic>Young Adult</topic><toplevel>online_resources</toplevel><creatorcontrib>Xi Long</creatorcontrib><creatorcontrib>Foussier, Jerome</creatorcontrib><creatorcontrib>Fonseca, Pedro</creatorcontrib><creatorcontrib>Haakma, Reinder</creatorcontrib><creatorcontrib>Aarts, Ronald M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xi Long</au><au>Foussier, Jerome</au><au>Fonseca, Pedro</au><au>Haakma, Reinder</au><au>Aarts, Ronald M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Respiration amplitude analysis for REM and NREM sleep classification</atitle><btitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><spage>5017</spage><epage>5020</epage><pages>5017-5020</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen's Kappa coefficient to a value of κ = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features (κ of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24110862</pmid><doi>10.1109/EMBC.2013.6610675</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.5017-5020 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6610675 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Actigraphy Adult Algorithms Automatic Data Processing Discriminant Analysis Electrocardiography Feature extraction Female Healthy Volunteers Heart rate variability Humans Linear Models Male Member and Geographic Activities Board committees Polysomnography - methods Reproducibility of Results Respiration Signal Processing, Computer-Assisted Sleep - physiology Sleep apnea Sleep, REM - physiology Young Adult |
title | Respiration amplitude analysis for REM and NREM sleep classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Respiration%20amplitude%20analysis%20for%20REM%20and%20NREM%20sleep%20classification&rft.btitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Xi%20Long&rft.date=2013-01-01&rft.volume=2013&rft.spage=5017&rft.epage=5020&rft.pages=5017-5020&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6610675&rft_dat=%3Cpubmed_6IE%3E24110862%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24110862&rft_ieee_id=6610675&rfr_iscdi=true |