Respiration amplitude analysis for REM and NREM sleep classification

In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xi Long, Foussier, Jerome, Fonseca, Pedro, Haakma, Reinder, Aarts, Ronald M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5020
container_issue
container_start_page 5017
container_title
container_volume 2013
creator Xi Long
Foussier, Jerome
Fonseca, Pedro
Haakma, Reinder
Aarts, Ronald M.
description In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen's Kappa coefficient to a value of κ = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features (κ of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities.
doi_str_mv 10.1109/EMBC.2013.6610675
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6610675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6610675</ieee_id><sourcerecordid>24110862</sourcerecordid><originalsourceid>FETCH-LOGICAL-i344t-e6f0fd443b32148e4913e78cf208266359d76e9b7726bade99cd4d5c5115045f3</originalsourceid><addsrcrecordid>eNo9UF1Lw0AQPEWxtfYHiCD5A4m395l71Bg_oFUoCr6VS24PTpI25NqH_vtGW33aYXdmmFlCroFmANTclfOHImMUeKYUUKXlCbkEIbWmDJQ5JWOQMk-FAnk2YGpEqnL9NSLTGL8ppaCV4oxfkBETg1-u2Jg8LjB2obebsF4ltu2asNk6TOzKNrsYYuLXfbIo58PCJW8_IDaIXVI3NsbgQ_0rvCLn3jYRp8c5IZ9P5Ufxks7en1-L-1kauBCbFJWn3gnBK85A5CgMcNR57RnN2RBNGqcVmkprpirr0JjaCSdrCSCpkJ5PyO3Bt9tWLbpl14fW9rvlX52BcHMgBET8Px-fxfe1RleD</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Respiration amplitude analysis for REM and NREM sleep classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xi Long ; Foussier, Jerome ; Fonseca, Pedro ; Haakma, Reinder ; Aarts, Ronald M.</creator><creatorcontrib>Xi Long ; Foussier, Jerome ; Fonseca, Pedro ; Haakma, Reinder ; Aarts, Ronald M.</creatorcontrib><description>In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen's Kappa coefficient to a value of κ = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features (κ of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6610675</identifier><identifier>PMID: 24110862</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Actigraphy ; Adult ; Algorithms ; Automatic Data Processing ; Discriminant Analysis ; Electrocardiography ; Feature extraction ; Female ; Healthy Volunteers ; Heart rate variability ; Humans ; Linear Models ; Male ; Member and Geographic Activities Board committees ; Polysomnography - methods ; Reproducibility of Results ; Respiration ; Signal Processing, Computer-Assisted ; Sleep - physiology ; Sleep apnea ; Sleep, REM - physiology ; Young Adult</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.5017-5020</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6610675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6610675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24110862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xi Long</creatorcontrib><creatorcontrib>Foussier, Jerome</creatorcontrib><creatorcontrib>Fonseca, Pedro</creatorcontrib><creatorcontrib>Haakma, Reinder</creatorcontrib><creatorcontrib>Aarts, Ronald M.</creatorcontrib><title>Respiration amplitude analysis for REM and NREM sleep classification</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen's Kappa coefficient to a value of κ = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features (κ of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities.</description><subject>Accuracy</subject><subject>Actigraphy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Automatic Data Processing</subject><subject>Discriminant Analysis</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Healthy Volunteers</subject><subject>Heart rate variability</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Male</subject><subject>Member and Geographic Activities Board committees</subject><subject>Polysomnography - methods</subject><subject>Reproducibility of Results</subject><subject>Respiration</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sleep - physiology</subject><subject>Sleep apnea</subject><subject>Sleep, REM - physiology</subject><subject>Young Adult</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9UF1Lw0AQPEWxtfYHiCD5A4m395l71Bg_oFUoCr6VS24PTpI25NqH_vtGW33aYXdmmFlCroFmANTclfOHImMUeKYUUKXlCbkEIbWmDJQ5JWOQMk-FAnk2YGpEqnL9NSLTGL8ppaCV4oxfkBETg1-u2Jg8LjB2obebsF4ltu2asNk6TOzKNrsYYuLXfbIo58PCJW8_IDaIXVI3NsbgQ_0rvCLn3jYRp8c5IZ9P5Ufxks7en1-L-1kauBCbFJWn3gnBK85A5CgMcNR57RnN2RBNGqcVmkprpirr0JjaCSdrCSCpkJ5PyO3Bt9tWLbpl14fW9rvlX52BcHMgBET8Px-fxfe1RleD</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Xi Long</creator><creator>Foussier, Jerome</creator><creator>Fonseca, Pedro</creator><creator>Haakma, Reinder</creator><creator>Aarts, Ronald M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130101</creationdate><title>Respiration amplitude analysis for REM and NREM sleep classification</title><author>Xi Long ; Foussier, Jerome ; Fonseca, Pedro ; Haakma, Reinder ; Aarts, Ronald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i344t-e6f0fd443b32148e4913e78cf208266359d76e9b7726bade99cd4d5c5115045f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Actigraphy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Automatic Data Processing</topic><topic>Discriminant Analysis</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Healthy Volunteers</topic><topic>Heart rate variability</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Male</topic><topic>Member and Geographic Activities Board committees</topic><topic>Polysomnography - methods</topic><topic>Reproducibility of Results</topic><topic>Respiration</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sleep - physiology</topic><topic>Sleep apnea</topic><topic>Sleep, REM - physiology</topic><topic>Young Adult</topic><toplevel>online_resources</toplevel><creatorcontrib>Xi Long</creatorcontrib><creatorcontrib>Foussier, Jerome</creatorcontrib><creatorcontrib>Fonseca, Pedro</creatorcontrib><creatorcontrib>Haakma, Reinder</creatorcontrib><creatorcontrib>Aarts, Ronald M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xi Long</au><au>Foussier, Jerome</au><au>Fonseca, Pedro</au><au>Haakma, Reinder</au><au>Aarts, Ronald M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Respiration amplitude analysis for REM and NREM sleep classification</atitle><btitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><spage>5017</spage><epage>5020</epage><pages>5017-5020</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid-eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen's Kappa coefficient to a value of κ = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features (κ of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24110862</pmid><doi>10.1109/EMBC.2013.6610675</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.5017-5020
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6610675
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Actigraphy
Adult
Algorithms
Automatic Data Processing
Discriminant Analysis
Electrocardiography
Feature extraction
Female
Healthy Volunteers
Heart rate variability
Humans
Linear Models
Male
Member and Geographic Activities Board committees
Polysomnography - methods
Reproducibility of Results
Respiration
Signal Processing, Computer-Assisted
Sleep - physiology
Sleep apnea
Sleep, REM - physiology
Young Adult
title Respiration amplitude analysis for REM and NREM sleep classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Respiration%20amplitude%20analysis%20for%20REM%20and%20NREM%20sleep%20classification&rft.btitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Xi%20Long&rft.date=2013-01-01&rft.volume=2013&rft.spage=5017&rft.epage=5020&rft.pages=5017-5020&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6610675&rft_dat=%3Cpubmed_6IE%3E24110862%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24110862&rft_ieee_id=6610675&rfr_iscdi=true