Labeling colorectal NBI zoom-videoendoscope image sequences with MRF and SVM

In this paper, we propose a sequence labeling method by using SVM posterior probabilities with a Markov Random Field (MRF) model for colorectal Narrow Band Imaging (NBI) zoom-videoendoscope. Classifying each frame of a video sequence by SVM classifiers independently leads to an output sequence which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hirakawa, Tsubasa, Tamaki, Toru, Raytchev, Bisser, Kaneda, Kazufumi, Koide, Tetsushi, Yoshida, Shigeta, Kominami, Yoko, Matsuo, Taiji, Miyaki, Rie, Tanaka, Shinji
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4834
container_issue
container_start_page 4831
container_title
container_volume 2013
creator Hirakawa, Tsubasa
Tamaki, Toru
Raytchev, Bisser
Kaneda, Kazufumi
Koide, Tetsushi
Yoshida, Shigeta
Kominami, Yoko
Matsuo, Taiji
Miyaki, Rie
Tanaka, Shinji
description In this paper, we propose a sequence labeling method by using SVM posterior probabilities with a Markov Random Field (MRF) model for colorectal Narrow Band Imaging (NBI) zoom-videoendoscope. Classifying each frame of a video sequence by SVM classifiers independently leads to an output sequence which is unstable and hard to understand by endoscopists. To make it more stable and readable, we use an MRF model to label the sequence of posterior probabilities. In addition, we introduce class asymmetry for the NBI images in order to keep and enhance frames where there is a possibility that cancers might have been detected. Experimental results with NBI video sequences demonstrate that the proposed MRF model with class asymmetry performs much better than a model without asymmetry.
doi_str_mv 10.1109/EMBC.2013.6610629
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6610629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6610629</ieee_id><sourcerecordid>24110816</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-313e9a5d14465f397cdc62ff17c696ce5ce565906da517c1b81599e7a44569833</originalsourceid><addsrcrecordid>eNo9UO1Kw0AQPEWxtfYBRJB7gdTb3N1e7qctrRZSBb_wX7leNjWS5mrSKvr0BlqFhR1mhmFnGTsHMQAQ9mo8G44GsQA5QASBsT1gp6C0MSIGtIesC1onkULQRy0WVkWYmNcO6zfNuxACDKKM5QnrxKrNSwC7LE3dgsqiWnIfylCT37iS3w2n_CeEVfRZZBSoykLjw5p4sXJL4g19bKny1PCvYvPGZw8T7qqMP77Mzthx7sqG-vvdY8-T8dPoNkrvb6aj6zQqpIBNJEGSdToDpVDn0hqfeYzzHIxHi550O6itwMzploNFAtpaMk4pjTaRsscud7nr7WJF2Xxdt5fV3_O_Wq3hYmcoiOhf3j9N_gKl5VnQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Labeling colorectal NBI zoom-videoendoscope image sequences with MRF and SVM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hirakawa, Tsubasa ; Tamaki, Toru ; Raytchev, Bisser ; Kaneda, Kazufumi ; Koide, Tetsushi ; Yoshida, Shigeta ; Kominami, Yoko ; Matsuo, Taiji ; Miyaki, Rie ; Tanaka, Shinji</creator><creatorcontrib>Hirakawa, Tsubasa ; Tamaki, Toru ; Raytchev, Bisser ; Kaneda, Kazufumi ; Koide, Tetsushi ; Yoshida, Shigeta ; Kominami, Yoko ; Matsuo, Taiji ; Miyaki, Rie ; Tanaka, Shinji</creatorcontrib><description>In this paper, we propose a sequence labeling method by using SVM posterior probabilities with a Markov Random Field (MRF) model for colorectal Narrow Band Imaging (NBI) zoom-videoendoscope. Classifying each frame of a video sequence by SVM classifiers independently leads to an output sequence which is unstable and hard to understand by endoscopists. To make it more stable and readable, we use an MRF model to label the sequence of posterior probabilities. In addition, we introduce class asymmetry for the NBI images in order to keep and enhance frames where there is a possibility that cancers might have been detected. Experimental results with NBI video sequences demonstrate that the proposed MRF model with class asymmetry performs much better than a model without asymmetry.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6610629</identifier><identifier>PMID: 24110816</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cancer ; Capsule Endoscopy ; Colorectal Neoplasms - diagnosis ; Endoscopes ; Humans ; Image Processing, Computer-Assisted ; Image segmentation ; Labeling ; Markov Chains ; Narrow Band Imaging - methods ; Support Vector Machine ; Support vector machines ; Tumors ; Video sequences</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.4831-4834</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6610629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6610629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24110816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirakawa, Tsubasa</creatorcontrib><creatorcontrib>Tamaki, Toru</creatorcontrib><creatorcontrib>Raytchev, Bisser</creatorcontrib><creatorcontrib>Kaneda, Kazufumi</creatorcontrib><creatorcontrib>Koide, Tetsushi</creatorcontrib><creatorcontrib>Yoshida, Shigeta</creatorcontrib><creatorcontrib>Kominami, Yoko</creatorcontrib><creatorcontrib>Matsuo, Taiji</creatorcontrib><creatorcontrib>Miyaki, Rie</creatorcontrib><creatorcontrib>Tanaka, Shinji</creatorcontrib><title>Labeling colorectal NBI zoom-videoendoscope image sequences with MRF and SVM</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In this paper, we propose a sequence labeling method by using SVM posterior probabilities with a Markov Random Field (MRF) model for colorectal Narrow Band Imaging (NBI) zoom-videoendoscope. Classifying each frame of a video sequence by SVM classifiers independently leads to an output sequence which is unstable and hard to understand by endoscopists. To make it more stable and readable, we use an MRF model to label the sequence of posterior probabilities. In addition, we introduce class asymmetry for the NBI images in order to keep and enhance frames where there is a possibility that cancers might have been detected. Experimental results with NBI video sequences demonstrate that the proposed MRF model with class asymmetry performs much better than a model without asymmetry.</description><subject>Cancer</subject><subject>Capsule Endoscopy</subject><subject>Colorectal Neoplasms - diagnosis</subject><subject>Endoscopes</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Markov Chains</subject><subject>Narrow Band Imaging - methods</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Tumors</subject><subject>Video sequences</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9UO1Kw0AQPEWxtfYBRJB7gdTb3N1e7qctrRZSBb_wX7leNjWS5mrSKvr0BlqFhR1mhmFnGTsHMQAQ9mo8G44GsQA5QASBsT1gp6C0MSIGtIesC1onkULQRy0WVkWYmNcO6zfNuxACDKKM5QnrxKrNSwC7LE3dgsqiWnIfylCT37iS3w2n_CeEVfRZZBSoykLjw5p4sXJL4g19bKny1PCvYvPGZw8T7qqMP77Mzthx7sqG-vvdY8-T8dPoNkrvb6aj6zQqpIBNJEGSdToDpVDn0hqfeYzzHIxHi550O6itwMzploNFAtpaMk4pjTaRsscud7nr7WJF2Xxdt5fV3_O_Wq3hYmcoiOhf3j9N_gKl5VnQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hirakawa, Tsubasa</creator><creator>Tamaki, Toru</creator><creator>Raytchev, Bisser</creator><creator>Kaneda, Kazufumi</creator><creator>Koide, Tetsushi</creator><creator>Yoshida, Shigeta</creator><creator>Kominami, Yoko</creator><creator>Matsuo, Taiji</creator><creator>Miyaki, Rie</creator><creator>Tanaka, Shinji</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130101</creationdate><title>Labeling colorectal NBI zoom-videoendoscope image sequences with MRF and SVM</title><author>Hirakawa, Tsubasa ; Tamaki, Toru ; Raytchev, Bisser ; Kaneda, Kazufumi ; Koide, Tetsushi ; Yoshida, Shigeta ; Kominami, Yoko ; Matsuo, Taiji ; Miyaki, Rie ; Tanaka, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-313e9a5d14465f397cdc62ff17c696ce5ce565906da517c1b81599e7a44569833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cancer</topic><topic>Capsule Endoscopy</topic><topic>Colorectal Neoplasms - diagnosis</topic><topic>Endoscopes</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Markov Chains</topic><topic>Narrow Band Imaging - methods</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Tumors</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Hirakawa, Tsubasa</creatorcontrib><creatorcontrib>Tamaki, Toru</creatorcontrib><creatorcontrib>Raytchev, Bisser</creatorcontrib><creatorcontrib>Kaneda, Kazufumi</creatorcontrib><creatorcontrib>Koide, Tetsushi</creatorcontrib><creatorcontrib>Yoshida, Shigeta</creatorcontrib><creatorcontrib>Kominami, Yoko</creatorcontrib><creatorcontrib>Matsuo, Taiji</creatorcontrib><creatorcontrib>Miyaki, Rie</creatorcontrib><creatorcontrib>Tanaka, Shinji</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hirakawa, Tsubasa</au><au>Tamaki, Toru</au><au>Raytchev, Bisser</au><au>Kaneda, Kazufumi</au><au>Koide, Tetsushi</au><au>Yoshida, Shigeta</au><au>Kominami, Yoko</au><au>Matsuo, Taiji</au><au>Miyaki, Rie</au><au>Tanaka, Shinji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Labeling colorectal NBI zoom-videoendoscope image sequences with MRF and SVM</atitle><btitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><spage>4831</spage><epage>4834</epage><pages>4831-4834</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>In this paper, we propose a sequence labeling method by using SVM posterior probabilities with a Markov Random Field (MRF) model for colorectal Narrow Band Imaging (NBI) zoom-videoendoscope. Classifying each frame of a video sequence by SVM classifiers independently leads to an output sequence which is unstable and hard to understand by endoscopists. To make it more stable and readable, we use an MRF model to label the sequence of posterior probabilities. In addition, we introduce class asymmetry for the NBI images in order to keep and enhance frames where there is a possibility that cancers might have been detected. Experimental results with NBI video sequences demonstrate that the proposed MRF model with class asymmetry performs much better than a model without asymmetry.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24110816</pmid><doi>10.1109/EMBC.2013.6610629</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.4831-4834
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6610629
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cancer
Capsule Endoscopy
Colorectal Neoplasms - diagnosis
Endoscopes
Humans
Image Processing, Computer-Assisted
Image segmentation
Labeling
Markov Chains
Narrow Band Imaging - methods
Support Vector Machine
Support vector machines
Tumors
Video sequences
title Labeling colorectal NBI zoom-videoendoscope image sequences with MRF and SVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Labeling%20colorectal%20NBI%20zoom-videoendoscope%20image%20sequences%20with%20MRF%20and%20SVM&rft.btitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Hirakawa,%20Tsubasa&rft.date=2013-01-01&rft.volume=2013&rft.spage=4831&rft.epage=4834&rft.pages=4831-4834&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6610629&rft_dat=%3Cpubmed_6IE%3E24110816%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24110816&rft_ieee_id=6610629&rfr_iscdi=true