A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization

Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage recon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013, Vol.2013, p.3415-3418
Hauptverfasser: Cheng, Jingxing, Hou, Yuqing, Yu, Jingjing, He, Xiaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3418
container_issue
container_start_page 3415
container_title 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
container_volume 2013
creator Cheng, Jingxing
Hou, Yuqing
Yu, Jingjing
He, Xiaowei
description Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage reconstruction algorithm that combines sparse regularization with adaptive finite element method is proposed, and two different inversion algorithms are employed separately on the initial coarse mesh and the second refined one. Numerical experiment results with a digital mouse model demonstrate the stability and computational efficiency of the proposed method for FMT.
doi_str_mv 10.1109/EMBC.2013.6610275
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6610275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6610275</ieee_id><sourcerecordid>24110462</sourcerecordid><originalsourceid>FETCH-LOGICAL-i216t-d484b9d04ded839b207b938c3cf8472c85ec865d663896ffc0b314846e9b001e3</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhqMoWmsfQATJC2zNeZPLWuoBKt4oeGXJZmfrym6zJLtIfXpTWr2agfnmY_5B6IqSKaXE3C6e7-ZTRiifKkUJy-URuqBC5jlhVJljNKJS6kwoKk9ST4zIlM7fz9Ekxi9CCM2V4oyfoXMmkk8oNkIfM9x_-yz2dg04gPOb2IfB9bXfYF_hqhl8gOhg4wC3vgE3NDbg3rd-HWz3ucWFjVDiRMfOhrhzrHdI_WN3jkt0WtkmwuRQx-jtfvE6f8yWLw9P89kyq9PlfVYKLQpTElFCqbkpGMkLw7XjrtIiZ05LcFrJMt2vjaoqRwpO044CU6RcwMfoZu_thqKFctWFurVhu_oLmoDrPVADwP_48Eb-CxeiYuw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng, Jingxing ; Hou, Yuqing ; Yu, Jingjing ; He, Xiaowei</creator><creatorcontrib>Cheng, Jingxing ; Hou, Yuqing ; Yu, Jingjing ; He, Xiaowei</creatorcontrib><description>Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage reconstruction algorithm that combines sparse regularization with adaptive finite element method is proposed, and two different inversion algorithms are employed separately on the initial coarse mesh and the second refined one. Numerical experiment results with a digital mouse model demonstrate the stability and computational efficiency of the proposed method for FMT.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6610275</identifier><identifier>PMID: 24110462</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Finite element analysis ; Fluorescence ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Mathematical model ; Mice ; Organ Specificity ; Phantoms, Imaging ; Reconstruction algorithms ; Tomography - methods</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.3415-3418</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6610275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6610275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24110462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Jingxing</creatorcontrib><creatorcontrib>Hou, Yuqing</creatorcontrib><creatorcontrib>Yu, Jingjing</creatorcontrib><creatorcontrib>He, Xiaowei</creatorcontrib><title>A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage reconstruction algorithm that combines sparse regularization with adaptive finite element method is proposed, and two different inversion algorithms are employed separately on the initial coarse mesh and the second refined one. Numerical experiment results with a digital mouse model demonstrate the stability and computational efficiency of the proposed method for FMT.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Finite element analysis</subject><subject>Fluorescence</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Mathematical model</subject><subject>Mice</subject><subject>Organ Specificity</subject><subject>Phantoms, Imaging</subject><subject>Reconstruction algorithms</subject><subject>Tomography - methods</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kNtKAzEQhqMoWmsfQATJC2zNeZPLWuoBKt4oeGXJZmfrym6zJLtIfXpTWr2agfnmY_5B6IqSKaXE3C6e7-ZTRiifKkUJy-URuqBC5jlhVJljNKJS6kwoKk9ST4zIlM7fz9Ekxi9CCM2V4oyfoXMmkk8oNkIfM9x_-yz2dg04gPOb2IfB9bXfYF_hqhl8gOhg4wC3vgE3NDbg3rd-HWz3ucWFjVDiRMfOhrhzrHdI_WN3jkt0WtkmwuRQx-jtfvE6f8yWLw9P89kyq9PlfVYKLQpTElFCqbkpGMkLw7XjrtIiZ05LcFrJMt2vjaoqRwpO044CU6RcwMfoZu_thqKFctWFurVhu_oLmoDrPVADwP_48Eb-CxeiYuw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Cheng, Jingxing</creator><creator>Hou, Yuqing</creator><creator>Yu, Jingjing</creator><creator>He, Xiaowei</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>2013</creationdate><title>A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization</title><author>Cheng, Jingxing ; Hou, Yuqing ; Yu, Jingjing ; He, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i216t-d484b9d04ded839b207b938c3cf8472c85ec865d663896ffc0b314846e9b001e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Finite element analysis</topic><topic>Fluorescence</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Mathematical model</topic><topic>Mice</topic><topic>Organ Specificity</topic><topic>Phantoms, Imaging</topic><topic>Reconstruction algorithms</topic><topic>Tomography - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jingxing</creatorcontrib><creatorcontrib>Hou, Yuqing</creatorcontrib><creatorcontrib>Yu, Jingjing</creatorcontrib><creatorcontrib>He, Xiaowei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Jingxing</au><au>Hou, Yuqing</au><au>Yu, Jingjing</au><au>He, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization</atitle><jtitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><spage>3415</spage><epage>3418</epage><pages>3415-3418</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage reconstruction algorithm that combines sparse regularization with adaptive finite element method is proposed, and two different inversion algorithms are employed separately on the initial coarse mesh and the second refined one. Numerical experiment results with a digital mouse model demonstrate the stability and computational efficiency of the proposed method for FMT.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24110462</pmid><doi>10.1109/EMBC.2013.6610275</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.3415-3418
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6610275
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Animals
Finite element analysis
Fluorescence
Image Processing, Computer-Assisted - methods
Image reconstruction
Mathematical model
Mice
Organ Specificity
Phantoms, Imaging
Reconstruction algorithms
Tomography - methods
title A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-stage%20reconstruction%20of%20fluorescence%20molecular%20tomography%20based%20on%20sparse%20regularization&rft.jtitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Cheng,%20Jingxing&rft.date=2013&rft.volume=2013&rft.spage=3415&rft.epage=3418&rft.pages=3415-3418&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6610275&rft_dat=%3Cpubmed_6IE%3E24110462%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24110462&rft_ieee_id=6610275&rfr_iscdi=true