A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization
Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage recon...
Gespeichert in:
Veröffentlicht in: | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013, Vol.2013, p.3415-3418 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3418 |
---|---|
container_issue | |
container_start_page | 3415 |
container_title | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
container_volume | 2013 |
creator | Cheng, Jingxing Hou, Yuqing Yu, Jingjing He, Xiaowei |
description | Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage reconstruction algorithm that combines sparse regularization with adaptive finite element method is proposed, and two different inversion algorithms are employed separately on the initial coarse mesh and the second refined one. Numerical experiment results with a digital mouse model demonstrate the stability and computational efficiency of the proposed method for FMT. |
doi_str_mv | 10.1109/EMBC.2013.6610275 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6610275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6610275</ieee_id><sourcerecordid>24110462</sourcerecordid><originalsourceid>FETCH-LOGICAL-i216t-d484b9d04ded839b207b938c3cf8472c85ec865d663896ffc0b314846e9b001e3</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhqMoWmsfQATJC2zNeZPLWuoBKt4oeGXJZmfrym6zJLtIfXpTWr2agfnmY_5B6IqSKaXE3C6e7-ZTRiifKkUJy-URuqBC5jlhVJljNKJS6kwoKk9ST4zIlM7fz9Ekxi9CCM2V4oyfoXMmkk8oNkIfM9x_-yz2dg04gPOb2IfB9bXfYF_hqhl8gOhg4wC3vgE3NDbg3rd-HWz3ucWFjVDiRMfOhrhzrHdI_WN3jkt0WtkmwuRQx-jtfvE6f8yWLw9P89kyq9PlfVYKLQpTElFCqbkpGMkLw7XjrtIiZ05LcFrJMt2vjaoqRwpO044CU6RcwMfoZu_thqKFctWFurVhu_oLmoDrPVADwP_48Eb-CxeiYuw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng, Jingxing ; Hou, Yuqing ; Yu, Jingjing ; He, Xiaowei</creator><creatorcontrib>Cheng, Jingxing ; Hou, Yuqing ; Yu, Jingjing ; He, Xiaowei</creatorcontrib><description>Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage reconstruction algorithm that combines sparse regularization with adaptive finite element method is proposed, and two different inversion algorithms are employed separately on the initial coarse mesh and the second refined one. Numerical experiment results with a digital mouse model demonstrate the stability and computational efficiency of the proposed method for FMT.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6610275</identifier><identifier>PMID: 24110462</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Finite element analysis ; Fluorescence ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Mathematical model ; Mice ; Organ Specificity ; Phantoms, Imaging ; Reconstruction algorithms ; Tomography - methods</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.3415-3418</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6610275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6610275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24110462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Jingxing</creatorcontrib><creatorcontrib>Hou, Yuqing</creatorcontrib><creatorcontrib>Yu, Jingjing</creatorcontrib><creatorcontrib>He, Xiaowei</creatorcontrib><title>A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage reconstruction algorithm that combines sparse regularization with adaptive finite element method is proposed, and two different inversion algorithms are employed separately on the initial coarse mesh and the second refined one. Numerical experiment results with a digital mouse model demonstrate the stability and computational efficiency of the proposed method for FMT.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Finite element analysis</subject><subject>Fluorescence</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Mathematical model</subject><subject>Mice</subject><subject>Organ Specificity</subject><subject>Phantoms, Imaging</subject><subject>Reconstruction algorithms</subject><subject>Tomography - methods</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kNtKAzEQhqMoWmsfQATJC2zNeZPLWuoBKt4oeGXJZmfrym6zJLtIfXpTWr2agfnmY_5B6IqSKaXE3C6e7-ZTRiifKkUJy-URuqBC5jlhVJljNKJS6kwoKk9ST4zIlM7fz9Ekxi9CCM2V4oyfoXMmkk8oNkIfM9x_-yz2dg04gPOb2IfB9bXfYF_hqhl8gOhg4wC3vgE3NDbg3rd-HWz3ucWFjVDiRMfOhrhzrHdI_WN3jkt0WtkmwuRQx-jtfvE6f8yWLw9P89kyq9PlfVYKLQpTElFCqbkpGMkLw7XjrtIiZ05LcFrJMt2vjaoqRwpO044CU6RcwMfoZu_thqKFctWFurVhu_oLmoDrPVADwP_48Eb-CxeiYuw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Cheng, Jingxing</creator><creator>Hou, Yuqing</creator><creator>Yu, Jingjing</creator><creator>He, Xiaowei</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>2013</creationdate><title>A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization</title><author>Cheng, Jingxing ; Hou, Yuqing ; Yu, Jingjing ; He, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i216t-d484b9d04ded839b207b938c3cf8472c85ec865d663896ffc0b314846e9b001e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Finite element analysis</topic><topic>Fluorescence</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Mathematical model</topic><topic>Mice</topic><topic>Organ Specificity</topic><topic>Phantoms, Imaging</topic><topic>Reconstruction algorithms</topic><topic>Tomography - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jingxing</creatorcontrib><creatorcontrib>Hou, Yuqing</creatorcontrib><creatorcontrib>Yu, Jingjing</creatorcontrib><creatorcontrib>He, Xiaowei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Jingxing</au><au>Hou, Yuqing</au><au>Yu, Jingjing</au><au>He, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization</atitle><jtitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><spage>3415</spage><epage>3418</epage><pages>3415-3418</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>Fluorescence molecular tomography (FMT) is a promising imaging modality that offers the possibilities to monitor cellular and molecular function in vivo. However, accurate and stable reconstruction of fluorescence-labeled targets remains a challenging problem. In this contribution, a two-stage reconstruction algorithm that combines sparse regularization with adaptive finite element method is proposed, and two different inversion algorithms are employed separately on the initial coarse mesh and the second refined one. Numerical experiment results with a digital mouse model demonstrate the stability and computational efficiency of the proposed method for FMT.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24110462</pmid><doi>10.1109/EMBC.2013.6610275</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.3415-3418 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6610275 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Animals Finite element analysis Fluorescence Image Processing, Computer-Assisted - methods Image reconstruction Mathematical model Mice Organ Specificity Phantoms, Imaging Reconstruction algorithms Tomography - methods |
title | A two-stage reconstruction of fluorescence molecular tomography based on sparse regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-stage%20reconstruction%20of%20fluorescence%20molecular%20tomography%20based%20on%20sparse%20regularization&rft.jtitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Cheng,%20Jingxing&rft.date=2013&rft.volume=2013&rft.spage=3415&rft.epage=3418&rft.pages=3415-3418&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6610275&rft_dat=%3Cpubmed_6IE%3E24110462%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24110462&rft_ieee_id=6610275&rfr_iscdi=true |