Artificial Neural Networks as an alternative to traditional fall detection methods

Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vallejo, Marcela, Isaza, Claudia V., Lopez, Jose D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1651
container_issue
container_start_page 1648
container_title
container_volume 2013
creator Vallejo, Marcela
Isaza, Claudia V.
Lopez, Jose D.
description Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process of testing a new fall detection method, based on Artificial Neural Networks (ANN). This method intends to improve fall detection accuracy, by avoiding the traditional threshold - based fall detection methods, and introducing ANN as a suitable option on this application.Also ANN have low computational cost, this characteristic makes them easy to implement on a portable device, comfortable to be wear by the patient.
doi_str_mv 10.1109/EMBC.2013.6609833
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6609833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6609833</ieee_id><sourcerecordid>24110020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-83c5f4fc47de841c71ec98cfcf41a012625c1bd1e187fda0a13839e95273137b3</originalsourceid><addsrcrecordid>eNo9kOtKAzEQhaMottY-gAiSF9iayX1_1lIvUBVEwX8lTWYxuu2WbKr49q62CgNnmPNx4Awhp8BGAKy8mN5dTkacgRhpzUorxB45BqmMYRx0uU_6oJQtpAZ10O2slIW25qVHhm37xhgDo7Xg4oj0uOzyGGd98jhOOVbRR1fTe9ykX8mfTXpvqetmRV2dMa1cjh9Ic0NzciHm2Kw6snJ1TQNm9D8HusT82oT2hBx2RovDnQ7I89X0aXJTzB6ubyfjWeGFVLmwwqtKVl6agFaCN4C-tL7ylQTHgGuuPCwCIFhTBcccCCtKLBU3AoRZiAE53-auN4slhvk6xaVLX_O_ch1wtgUiIv7bu9eJb0IDXc4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial Neural Networks as an alternative to traditional fall detection methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vallejo, Marcela ; Isaza, Claudia V. ; Lopez, Jose D.</creator><creatorcontrib>Vallejo, Marcela ; Isaza, Claudia V. ; Lopez, Jose D.</creatorcontrib><description>Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process of testing a new fall detection method, based on Artificial Neural Networks (ANN). This method intends to improve fall detection accuracy, by avoiding the traditional threshold - based fall detection methods, and introducing ANN as a suitable option on this application.Also ANN have low computational cost, this characteristic makes them easy to implement on a portable device, comfortable to be wear by the patient.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6609833</identifier><identifier>PMID: 24110020</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acceleration ; Accelerometers ; Accelerometry - instrumentation ; Accelerometry - methods ; Accidental Falls - statistics &amp; numerical data ; Adolescent ; Adult ; Artificial neural networks ; Automatic Data Processing ; Biomedical monitoring ; Body Weight ; Female ; Humans ; Male ; Middle Aged ; Neural Networks (Computer) ; Neurons ; Sensors ; Training ; Young Adult</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.1648-1651</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-83c5f4fc47de841c71ec98cfcf41a012625c1bd1e187fda0a13839e95273137b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6609833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6609833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24110020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallejo, Marcela</creatorcontrib><creatorcontrib>Isaza, Claudia V.</creatorcontrib><creatorcontrib>Lopez, Jose D.</creatorcontrib><title>Artificial Neural Networks as an alternative to traditional fall detection methods</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process of testing a new fall detection method, based on Artificial Neural Networks (ANN). This method intends to improve fall detection accuracy, by avoiding the traditional threshold - based fall detection methods, and introducing ANN as a suitable option on this application.Also ANN have low computational cost, this characteristic makes them easy to implement on a portable device, comfortable to be wear by the patient.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Accelerometry - instrumentation</subject><subject>Accelerometry - methods</subject><subject>Accidental Falls - statistics &amp; numerical data</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Artificial neural networks</subject><subject>Automatic Data Processing</subject><subject>Biomedical monitoring</subject><subject>Body Weight</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Sensors</subject><subject>Training</subject><subject>Young Adult</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kOtKAzEQhaMottY-gAiSF9iayX1_1lIvUBVEwX8lTWYxuu2WbKr49q62CgNnmPNx4Awhp8BGAKy8mN5dTkacgRhpzUorxB45BqmMYRx0uU_6oJQtpAZ10O2slIW25qVHhm37xhgDo7Xg4oj0uOzyGGd98jhOOVbRR1fTe9ykX8mfTXpvqetmRV2dMa1cjh9Ic0NzciHm2Kw6snJ1TQNm9D8HusT82oT2hBx2RovDnQ7I89X0aXJTzB6ubyfjWeGFVLmwwqtKVl6agFaCN4C-tL7ylQTHgGuuPCwCIFhTBcccCCtKLBU3AoRZiAE53-auN4slhvk6xaVLX_O_ch1wtgUiIv7bu9eJb0IDXc4</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Vallejo, Marcela</creator><creator>Isaza, Claudia V.</creator><creator>Lopez, Jose D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130101</creationdate><title>Artificial Neural Networks as an alternative to traditional fall detection methods</title><author>Vallejo, Marcela ; Isaza, Claudia V. ; Lopez, Jose D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-83c5f4fc47de841c71ec98cfcf41a012625c1bd1e187fda0a13839e95273137b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Accelerometry - instrumentation</topic><topic>Accelerometry - methods</topic><topic>Accidental Falls - statistics &amp; numerical data</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Artificial neural networks</topic><topic>Automatic Data Processing</topic><topic>Biomedical monitoring</topic><topic>Body Weight</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Sensors</topic><topic>Training</topic><topic>Young Adult</topic><toplevel>online_resources</toplevel><creatorcontrib>Vallejo, Marcela</creatorcontrib><creatorcontrib>Isaza, Claudia V.</creatorcontrib><creatorcontrib>Lopez, Jose D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vallejo, Marcela</au><au>Isaza, Claudia V.</au><au>Lopez, Jose D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial Neural Networks as an alternative to traditional fall detection methods</atitle><btitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><spage>1648</spage><epage>1651</epage><pages>1648-1651</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process of testing a new fall detection method, based on Artificial Neural Networks (ANN). This method intends to improve fall detection accuracy, by avoiding the traditional threshold - based fall detection methods, and introducing ANN as a suitable option on this application.Also ANN have low computational cost, this characteristic makes them easy to implement on a portable device, comfortable to be wear by the patient.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24110020</pmid><doi>10.1109/EMBC.2013.6609833</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.1648-1651
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6609833
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Accelerometers
Accelerometry - instrumentation
Accelerometry - methods
Accidental Falls - statistics & numerical data
Adolescent
Adult
Artificial neural networks
Automatic Data Processing
Biomedical monitoring
Body Weight
Female
Humans
Male
Middle Aged
Neural Networks (Computer)
Neurons
Sensors
Training
Young Adult
title Artificial Neural Networks as an alternative to traditional fall detection methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20Neural%20Networks%20as%20an%20alternative%20to%20traditional%20fall%20detection%20methods&rft.btitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Vallejo,%20Marcela&rft.date=2013-01-01&rft.volume=2013&rft.spage=1648&rft.epage=1651&rft.pages=1648-1651&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6609833&rft_dat=%3Cpubmed_6IE%3E24110020%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24110020&rft_ieee_id=6609833&rfr_iscdi=true