Artificial Neural Networks as an alternative to traditional fall detection methods
Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process o...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1651 |
---|---|
container_issue | |
container_start_page | 1648 |
container_title | |
container_volume | 2013 |
creator | Vallejo, Marcela Isaza, Claudia V. Lopez, Jose D. |
description | Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process of testing a new fall detection method, based on Artificial Neural Networks (ANN). This method intends to improve fall detection accuracy, by avoiding the traditional threshold - based fall detection methods, and introducing ANN as a suitable option on this application.Also ANN have low computational cost, this characteristic makes them easy to implement on a portable device, comfortable to be wear by the patient. |
doi_str_mv | 10.1109/EMBC.2013.6609833 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6609833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6609833</ieee_id><sourcerecordid>24110020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-83c5f4fc47de841c71ec98cfcf41a012625c1bd1e187fda0a13839e95273137b3</originalsourceid><addsrcrecordid>eNo9kOtKAzEQhaMottY-gAiSF9iayX1_1lIvUBVEwX8lTWYxuu2WbKr49q62CgNnmPNx4Awhp8BGAKy8mN5dTkacgRhpzUorxB45BqmMYRx0uU_6oJQtpAZ10O2slIW25qVHhm37xhgDo7Xg4oj0uOzyGGd98jhOOVbRR1fTe9ykX8mfTXpvqetmRV2dMa1cjh9Ic0NzciHm2Kw6snJ1TQNm9D8HusT82oT2hBx2RovDnQ7I89X0aXJTzB6ubyfjWeGFVLmwwqtKVl6agFaCN4C-tL7ylQTHgGuuPCwCIFhTBcccCCtKLBU3AoRZiAE53-auN4slhvk6xaVLX_O_ch1wtgUiIv7bu9eJb0IDXc4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial Neural Networks as an alternative to traditional fall detection methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vallejo, Marcela ; Isaza, Claudia V. ; Lopez, Jose D.</creator><creatorcontrib>Vallejo, Marcela ; Isaza, Claudia V. ; Lopez, Jose D.</creatorcontrib><description>Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process of testing a new fall detection method, based on Artificial Neural Networks (ANN). This method intends to improve fall detection accuracy, by avoiding the traditional threshold - based fall detection methods, and introducing ANN as a suitable option on this application.Also ANN have low computational cost, this characteristic makes them easy to implement on a portable device, comfortable to be wear by the patient.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1457702169</identifier><identifier>EISBN: 9781457702167</identifier><identifier>DOI: 10.1109/EMBC.2013.6609833</identifier><identifier>PMID: 24110020</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acceleration ; Accelerometers ; Accelerometry - instrumentation ; Accelerometry - methods ; Accidental Falls - statistics & numerical data ; Adolescent ; Adult ; Artificial neural networks ; Automatic Data Processing ; Biomedical monitoring ; Body Weight ; Female ; Humans ; Male ; Middle Aged ; Neural Networks (Computer) ; Neurons ; Sensors ; Training ; Young Adult</subject><ispartof>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.1648-1651</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-83c5f4fc47de841c71ec98cfcf41a012625c1bd1e187fda0a13839e95273137b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6609833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6609833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24110020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallejo, Marcela</creatorcontrib><creatorcontrib>Isaza, Claudia V.</creatorcontrib><creatorcontrib>Lopez, Jose D.</creatorcontrib><title>Artificial Neural Networks as an alternative to traditional fall detection methods</title><title>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process of testing a new fall detection method, based on Artificial Neural Networks (ANN). This method intends to improve fall detection accuracy, by avoiding the traditional threshold - based fall detection methods, and introducing ANN as a suitable option on this application.Also ANN have low computational cost, this characteristic makes them easy to implement on a portable device, comfortable to be wear by the patient.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Accelerometry - instrumentation</subject><subject>Accelerometry - methods</subject><subject>Accidental Falls - statistics & numerical data</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Artificial neural networks</subject><subject>Automatic Data Processing</subject><subject>Biomedical monitoring</subject><subject>Body Weight</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Sensors</subject><subject>Training</subject><subject>Young Adult</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1457702169</isbn><isbn>9781457702167</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kOtKAzEQhaMottY-gAiSF9iayX1_1lIvUBVEwX8lTWYxuu2WbKr49q62CgNnmPNx4Awhp8BGAKy8mN5dTkacgRhpzUorxB45BqmMYRx0uU_6oJQtpAZ10O2slIW25qVHhm37xhgDo7Xg4oj0uOzyGGd98jhOOVbRR1fTe9ykX8mfTXpvqetmRV2dMa1cjh9Ic0NzciHm2Kw6snJ1TQNm9D8HusT82oT2hBx2RovDnQ7I89X0aXJTzB6ubyfjWeGFVLmwwqtKVl6agFaCN4C-tL7ylQTHgGuuPCwCIFhTBcccCCtKLBU3AoRZiAE53-auN4slhvk6xaVLX_O_ch1wtgUiIv7bu9eJb0IDXc4</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Vallejo, Marcela</creator><creator>Isaza, Claudia V.</creator><creator>Lopez, Jose D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130101</creationdate><title>Artificial Neural Networks as an alternative to traditional fall detection methods</title><author>Vallejo, Marcela ; Isaza, Claudia V. ; Lopez, Jose D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-83c5f4fc47de841c71ec98cfcf41a012625c1bd1e187fda0a13839e95273137b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Accelerometry - instrumentation</topic><topic>Accelerometry - methods</topic><topic>Accidental Falls - statistics & numerical data</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Artificial neural networks</topic><topic>Automatic Data Processing</topic><topic>Biomedical monitoring</topic><topic>Body Weight</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Sensors</topic><topic>Training</topic><topic>Young Adult</topic><toplevel>online_resources</toplevel><creatorcontrib>Vallejo, Marcela</creatorcontrib><creatorcontrib>Isaza, Claudia V.</creatorcontrib><creatorcontrib>Lopez, Jose D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vallejo, Marcela</au><au>Isaza, Claudia V.</au><au>Lopez, Jose D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial Neural Networks as an alternative to traditional fall detection methods</atitle><btitle>2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><spage>1648</spage><epage>1651</epage><pages>1648-1651</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><eisbn>1457702169</eisbn><eisbn>9781457702167</eisbn><abstract>Falls are common events among older adults and may have serious consequences. Automatic fall detection systems are becoming a popular tool to rapidly detect such events, helping family or health personal to rapidly help the person that falls. This paper presents the results obtained in the process of testing a new fall detection method, based on Artificial Neural Networks (ANN). This method intends to improve fall detection accuracy, by avoiding the traditional threshold - based fall detection methods, and introducing ANN as a suitable option on this application.Also ANN have low computational cost, this characteristic makes them easy to implement on a portable device, comfortable to be wear by the patient.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24110020</pmid><doi>10.1109/EMBC.2013.6609833</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, Vol.2013, p.1648-1651 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6609833 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Accelerometers Accelerometry - instrumentation Accelerometry - methods Accidental Falls - statistics & numerical data Adolescent Adult Artificial neural networks Automatic Data Processing Biomedical monitoring Body Weight Female Humans Male Middle Aged Neural Networks (Computer) Neurons Sensors Training Young Adult |
title | Artificial Neural Networks as an alternative to traditional fall detection methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20Neural%20Networks%20as%20an%20alternative%20to%20traditional%20fall%20detection%20methods&rft.btitle=2013%2035th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Vallejo,%20Marcela&rft.date=2013-01-01&rft.volume=2013&rft.spage=1648&rft.epage=1651&rft.pages=1648-1651&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2013.6609833&rft_dat=%3Cpubmed_6IE%3E24110020%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702169&rft.eisbn_list=9781457702167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24110020&rft_ieee_id=6609833&rfr_iscdi=true |