Development of a physically based axial compressor model

Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tournes, C., Landrum, D.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue
container_start_page 120
container_title
container_volume
creator Tournes, C.
Landrum, D.B.
description Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open-loop behavior of an axial compressor. The simple description of the pressure rise in the compressor is not related to the variations of isentropic efficiency and to their causes. In this paper, a dynamic model operating as the MG3 is presented. A velocity triangle model and the modeling of the phenomena causing isentropic losses replace the cubic model. The compressor model while being more complex than the MG3 model is simple enough to be integrated in a control model.
doi_str_mv 10.1109/SSST.1998.660030
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_660030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>660030</ieee_id><sourcerecordid>660030</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-28e0e95ff373d35f4250db21185d59b09f825f27fd6eecdea3e2d4a31e5b8dd93</originalsourceid><addsrcrecordid>eNotj0tLxDAURoMPsI6zF1f5A6335tVkKeMTBlx0XA9pc4OV1JZmEPvvHRjhg7M7h4-xW4QKEdx90zS7Cp2zlTEAEs5YIdBgaVHqc7Z2tYXjpNKqthesAHCqFNbZK3ad8xcAGCN0wewj_VAap4G-D3yM3PPpc8l951NaeOszBe5_e594Nw7TTDmPMx_GQOmGXUafMq3_uWIfz0-7zWu5fX952zxsyx5rdTgmCcjpGGUtg9RRCQ2hFYhWB-1acNEKHUUdgyHqAnlJIigvkXRrQ3Byxe5O3p6I9tPcD35e9qfP8g8NuEjp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Development of a physically based axial compressor model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tournes, C. ; Landrum, D.B.</creator><creatorcontrib>Tournes, C. ; Landrum, D.B.</creatorcontrib><description>Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open-loop behavior of an axial compressor. The simple description of the pressure rise in the compressor is not related to the variations of isentropic efficiency and to their causes. In this paper, a dynamic model operating as the MG3 is presented. A velocity triangle model and the modeling of the phenomena causing isentropic losses replace the cubic model. The compressor model while being more complex than the MG3 model is simple enough to be integrated in a control model.</description><identifier>ISSN: 0094-2898</identifier><identifier>ISBN: 9780780345478</identifier><identifier>ISBN: 0780345479</identifier><identifier>EISSN: 2161-8135</identifier><identifier>DOI: 10.1109/SSST.1998.660030</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerodynamics ; Blades ; Electronic mail ; Open loop systems ; Resonant frequency ; Stability ; Stators ; Surges ; Temperature ; Wheels</subject><ispartof>Proceedings of Thirtieth Southeastern Symposium on System Theory, 1998, p.120-124</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/660030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/660030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tournes, C.</creatorcontrib><creatorcontrib>Landrum, D.B.</creatorcontrib><title>Development of a physically based axial compressor model</title><title>Proceedings of Thirtieth Southeastern Symposium on System Theory</title><addtitle>SSST</addtitle><description>Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open-loop behavior of an axial compressor. The simple description of the pressure rise in the compressor is not related to the variations of isentropic efficiency and to their causes. In this paper, a dynamic model operating as the MG3 is presented. A velocity triangle model and the modeling of the phenomena causing isentropic losses replace the cubic model. The compressor model while being more complex than the MG3 model is simple enough to be integrated in a control model.</description><subject>Aerodynamics</subject><subject>Blades</subject><subject>Electronic mail</subject><subject>Open loop systems</subject><subject>Resonant frequency</subject><subject>Stability</subject><subject>Stators</subject><subject>Surges</subject><subject>Temperature</subject><subject>Wheels</subject><issn>0094-2898</issn><issn>2161-8135</issn><isbn>9780780345478</isbn><isbn>0780345479</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLxDAURoMPsI6zF1f5A6335tVkKeMTBlx0XA9pc4OV1JZmEPvvHRjhg7M7h4-xW4QKEdx90zS7Cp2zlTEAEs5YIdBgaVHqc7Z2tYXjpNKqthesAHCqFNbZK3ad8xcAGCN0wewj_VAap4G-D3yM3PPpc8l951NaeOszBe5_e594Nw7TTDmPMx_GQOmGXUafMq3_uWIfz0-7zWu5fX952zxsyx5rdTgmCcjpGGUtg9RRCQ2hFYhWB-1acNEKHUUdgyHqAnlJIigvkXRrQ3Byxe5O3p6I9tPcD35e9qfP8g8NuEjp</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Tournes, C.</creator><creator>Landrum, D.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Development of a physically based axial compressor model</title><author>Tournes, C. ; Landrum, D.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-28e0e95ff373d35f4250db21185d59b09f825f27fd6eecdea3e2d4a31e5b8dd93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Aerodynamics</topic><topic>Blades</topic><topic>Electronic mail</topic><topic>Open loop systems</topic><topic>Resonant frequency</topic><topic>Stability</topic><topic>Stators</topic><topic>Surges</topic><topic>Temperature</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Tournes, C.</creatorcontrib><creatorcontrib>Landrum, D.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tournes, C.</au><au>Landrum, D.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Development of a physically based axial compressor model</atitle><btitle>Proceedings of Thirtieth Southeastern Symposium on System Theory</btitle><stitle>SSST</stitle><date>1998</date><risdate>1998</risdate><spage>120</spage><epage>124</epage><pages>120-124</pages><issn>0094-2898</issn><eissn>2161-8135</eissn><isbn>9780780345478</isbn><isbn>0780345479</isbn><abstract>Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open-loop behavior of an axial compressor. The simple description of the pressure rise in the compressor is not related to the variations of isentropic efficiency and to their causes. In this paper, a dynamic model operating as the MG3 is presented. A velocity triangle model and the modeling of the phenomena causing isentropic losses replace the cubic model. The compressor model while being more complex than the MG3 model is simple enough to be integrated in a control model.</abstract><pub>IEEE</pub><doi>10.1109/SSST.1998.660030</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0094-2898
ispartof Proceedings of Thirtieth Southeastern Symposium on System Theory, 1998, p.120-124
issn 0094-2898
2161-8135
language eng
recordid cdi_ieee_primary_660030
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerodynamics
Blades
Electronic mail
Open loop systems
Resonant frequency
Stability
Stators
Surges
Temperature
Wheels
title Development of a physically based axial compressor model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Development%20of%20a%20physically%20based%20axial%20compressor%20model&rft.btitle=Proceedings%20of%20Thirtieth%20Southeastern%20Symposium%20on%20System%20Theory&rft.au=Tournes,%20C.&rft.date=1998&rft.spage=120&rft.epage=124&rft.pages=120-124&rft.issn=0094-2898&rft.eissn=2161-8135&rft.isbn=9780780345478&rft.isbn_list=0780345479&rft_id=info:doi/10.1109/SSST.1998.660030&rft_dat=%3Cieee_6IE%3E660030%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=660030&rfr_iscdi=true