Development of a physically based axial compressor model
Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | |
container_start_page | 120 |
container_title | |
container_volume | |
creator | Tournes, C. Landrum, D.B. |
description | Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open-loop behavior of an axial compressor. The simple description of the pressure rise in the compressor is not related to the variations of isentropic efficiency and to their causes. In this paper, a dynamic model operating as the MG3 is presented. A velocity triangle model and the modeling of the phenomena causing isentropic losses replace the cubic model. The compressor model while being more complex than the MG3 model is simple enough to be integrated in a control model. |
doi_str_mv | 10.1109/SSST.1998.660030 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_660030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>660030</ieee_id><sourcerecordid>660030</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-28e0e95ff373d35f4250db21185d59b09f825f27fd6eecdea3e2d4a31e5b8dd93</originalsourceid><addsrcrecordid>eNotj0tLxDAURoMPsI6zF1f5A6335tVkKeMTBlx0XA9pc4OV1JZmEPvvHRjhg7M7h4-xW4QKEdx90zS7Cp2zlTEAEs5YIdBgaVHqc7Z2tYXjpNKqthesAHCqFNbZK3ad8xcAGCN0wewj_VAap4G-D3yM3PPpc8l951NaeOszBe5_e594Nw7TTDmPMx_GQOmGXUafMq3_uWIfz0-7zWu5fX952zxsyx5rdTgmCcjpGGUtg9RRCQ2hFYhWB-1acNEKHUUdgyHqAnlJIigvkXRrQ3Byxe5O3p6I9tPcD35e9qfP8g8NuEjp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Development of a physically based axial compressor model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tournes, C. ; Landrum, D.B.</creator><creatorcontrib>Tournes, C. ; Landrum, D.B.</creatorcontrib><description>Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open-loop behavior of an axial compressor. The simple description of the pressure rise in the compressor is not related to the variations of isentropic efficiency and to their causes. In this paper, a dynamic model operating as the MG3 is presented. A velocity triangle model and the modeling of the phenomena causing isentropic losses replace the cubic model. The compressor model while being more complex than the MG3 model is simple enough to be integrated in a control model.</description><identifier>ISSN: 0094-2898</identifier><identifier>ISBN: 9780780345478</identifier><identifier>ISBN: 0780345479</identifier><identifier>EISSN: 2161-8135</identifier><identifier>DOI: 10.1109/SSST.1998.660030</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerodynamics ; Blades ; Electronic mail ; Open loop systems ; Resonant frequency ; Stability ; Stators ; Surges ; Temperature ; Wheels</subject><ispartof>Proceedings of Thirtieth Southeastern Symposium on System Theory, 1998, p.120-124</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/660030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/660030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tournes, C.</creatorcontrib><creatorcontrib>Landrum, D.B.</creatorcontrib><title>Development of a physically based axial compressor model</title><title>Proceedings of Thirtieth Southeastern Symposium on System Theory</title><addtitle>SSST</addtitle><description>Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open-loop behavior of an axial compressor. The simple description of the pressure rise in the compressor is not related to the variations of isentropic efficiency and to their causes. In this paper, a dynamic model operating as the MG3 is presented. A velocity triangle model and the modeling of the phenomena causing isentropic losses replace the cubic model. The compressor model while being more complex than the MG3 model is simple enough to be integrated in a control model.</description><subject>Aerodynamics</subject><subject>Blades</subject><subject>Electronic mail</subject><subject>Open loop systems</subject><subject>Resonant frequency</subject><subject>Stability</subject><subject>Stators</subject><subject>Surges</subject><subject>Temperature</subject><subject>Wheels</subject><issn>0094-2898</issn><issn>2161-8135</issn><isbn>9780780345478</isbn><isbn>0780345479</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLxDAURoMPsI6zF1f5A6335tVkKeMTBlx0XA9pc4OV1JZmEPvvHRjhg7M7h4-xW4QKEdx90zS7Cp2zlTEAEs5YIdBgaVHqc7Z2tYXjpNKqthesAHCqFNbZK3ad8xcAGCN0wewj_VAap4G-D3yM3PPpc8l951NaeOszBe5_e594Nw7TTDmPMx_GQOmGXUafMq3_uWIfz0-7zWu5fX952zxsyx5rdTgmCcjpGGUtg9RRCQ2hFYhWB-1acNEKHUUdgyHqAnlJIigvkXRrQ3Byxe5O3p6I9tPcD35e9qfP8g8NuEjp</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Tournes, C.</creator><creator>Landrum, D.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Development of a physically based axial compressor model</title><author>Tournes, C. ; Landrum, D.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-28e0e95ff373d35f4250db21185d59b09f825f27fd6eecdea3e2d4a31e5b8dd93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Aerodynamics</topic><topic>Blades</topic><topic>Electronic mail</topic><topic>Open loop systems</topic><topic>Resonant frequency</topic><topic>Stability</topic><topic>Stators</topic><topic>Surges</topic><topic>Temperature</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Tournes, C.</creatorcontrib><creatorcontrib>Landrum, D.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tournes, C.</au><au>Landrum, D.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Development of a physically based axial compressor model</atitle><btitle>Proceedings of Thirtieth Southeastern Symposium on System Theory</btitle><stitle>SSST</stitle><date>1998</date><risdate>1998</risdate><spage>120</spage><epage>124</epage><pages>120-124</pages><issn>0094-2898</issn><eissn>2161-8135</eissn><isbn>9780780345478</isbn><isbn>0780345479</isbn><abstract>Aero-engines operate in regimes limited by both rotating stall and surge. The design of controllers allowing to operate close to compressor stability limit and capable of preventing rotating stalls and surge. The Moore-Greitzer cubic model (MG3) [1984, 1986] provides a simplified description of open-loop behavior of an axial compressor. The simple description of the pressure rise in the compressor is not related to the variations of isentropic efficiency and to their causes. In this paper, a dynamic model operating as the MG3 is presented. A velocity triangle model and the modeling of the phenomena causing isentropic losses replace the cubic model. The compressor model while being more complex than the MG3 model is simple enough to be integrated in a control model.</abstract><pub>IEEE</pub><doi>10.1109/SSST.1998.660030</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0094-2898 |
ispartof | Proceedings of Thirtieth Southeastern Symposium on System Theory, 1998, p.120-124 |
issn | 0094-2898 2161-8135 |
language | eng |
recordid | cdi_ieee_primary_660030 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerodynamics Blades Electronic mail Open loop systems Resonant frequency Stability Stators Surges Temperature Wheels |
title | Development of a physically based axial compressor model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Development%20of%20a%20physically%20based%20axial%20compressor%20model&rft.btitle=Proceedings%20of%20Thirtieth%20Southeastern%20Symposium%20on%20System%20Theory&rft.au=Tournes,%20C.&rft.date=1998&rft.spage=120&rft.epage=124&rft.pages=120-124&rft.issn=0094-2898&rft.eissn=2161-8135&rft.isbn=9780780345478&rft.isbn_list=0780345479&rft_id=info:doi/10.1109/SSST.1998.660030&rft_dat=%3Cieee_6IE%3E660030%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=660030&rfr_iscdi=true |