A new sensor scheduling method for distributed sensor network

In this paper, a sensor network is used to estimate the dynamic state of a system. At each time step, only one of the sensors is available. This means that at each time step only one sensor can send its measured data to a central node, in which all of processing is done. We want to provide an optima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Safarinejadian, Behrooz, Rahimi, Abdolah, Mozaffari, Mohiyeddin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Safarinejadian, Behrooz
Rahimi, Abdolah
Mozaffari, Mohiyeddin
description In this paper, a sensor network is used to estimate the dynamic state of a system. At each time step, only one of the sensors is available. This means that at each time step only one sensor can send its measured data to a central node, in which all of processing is done. We want to provide an optimal algorithm for scheduling of sensor selection at every time step. Our goal is to select the appropriate sensor to reduce computations, optimize the energy consumption and enhance the network lifetime. To achieve this goal, we must reduce the error covariance. Two tree algorithms are used in this work: sliding window algorithm (motivated by the Viterbi algorithm) and thresholding algorithm. Moreover we study a technique that employs choosing the sensors randomly from a probability distribution which can be optimized. Finally we will offer a new algorithm based on circular selection. Performance of the proposed algorithms is illustrated with numerical examples.
doi_str_mv 10.1109/IranianCEE.2013.6599524
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6599524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6599524</ieee_id><sourcerecordid>6599524</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b9ab0bf3ca462d0f53bdda561da4e1d7a9e42e32a670fd8e0fc85803b1e6b1283</originalsourceid><addsrcrecordid>eNo1j81KAzEURiMoWOo8gQvnBWbMzX8WLsowaqHgRtclmdzYaDsjyZTi2ytYVx8cDgc-Qu6AtgDU3q-zG5Mbu75vGQXeKmmtZOKCVFYbEEpzqbjgl2TBQIlGUymuSVXKB6WUgzHGygV5WNUjnuqCY5lyXYYdhuM-je_1AefdFOr4S0Mqc07-OGP4F0ecT1P-vCFX0e0LVuddkrfH_rV7bjYvT-tutWkSaDk33jpPfeSDE4oFGiX3ITipIDiBELSzKBhy5pSmMRikcTDSUO4BlQdm-JLc_nUTIm6_cjq4_L09H-Y_kvxMyA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new sensor scheduling method for distributed sensor network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Safarinejadian, Behrooz ; Rahimi, Abdolah ; Mozaffari, Mohiyeddin</creator><creatorcontrib>Safarinejadian, Behrooz ; Rahimi, Abdolah ; Mozaffari, Mohiyeddin</creatorcontrib><description>In this paper, a sensor network is used to estimate the dynamic state of a system. At each time step, only one of the sensors is available. This means that at each time step only one sensor can send its measured data to a central node, in which all of processing is done. We want to provide an optimal algorithm for scheduling of sensor selection at every time step. Our goal is to select the appropriate sensor to reduce computations, optimize the energy consumption and enhance the network lifetime. To achieve this goal, we must reduce the error covariance. Two tree algorithms are used in this work: sliding window algorithm (motivated by the Viterbi algorithm) and thresholding algorithm. Moreover we study a technique that employs choosing the sensors randomly from a probability distribution which can be optimized. Finally we will offer a new algorithm based on circular selection. Performance of the proposed algorithms is illustrated with numerical examples.</description><identifier>ISSN: 2164-7054</identifier><identifier>EISBN: 9781467356343</identifier><identifier>EISBN: 1467356344</identifier><identifier>DOI: 10.1109/IranianCEE.2013.6599524</identifier><language>eng</language><publisher>IEEE</publisher><subject>algorithm ; Cost function ; Educational institutions ; error covariance ; offline optimization ; Optimal scheduling ; Robot sensing systems ; Schedules ; Scheduling ; sensor scheduling ; Signal processing algorithms ; sub-optimal</subject><ispartof>2013 21st Iranian Conference on Electrical Engineering (ICEE), 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6599524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6599524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Safarinejadian, Behrooz</creatorcontrib><creatorcontrib>Rahimi, Abdolah</creatorcontrib><creatorcontrib>Mozaffari, Mohiyeddin</creatorcontrib><title>A new sensor scheduling method for distributed sensor network</title><title>2013 21st Iranian Conference on Electrical Engineering (ICEE)</title><addtitle>IranianCEE</addtitle><description>In this paper, a sensor network is used to estimate the dynamic state of a system. At each time step, only one of the sensors is available. This means that at each time step only one sensor can send its measured data to a central node, in which all of processing is done. We want to provide an optimal algorithm for scheduling of sensor selection at every time step. Our goal is to select the appropriate sensor to reduce computations, optimize the energy consumption and enhance the network lifetime. To achieve this goal, we must reduce the error covariance. Two tree algorithms are used in this work: sliding window algorithm (motivated by the Viterbi algorithm) and thresholding algorithm. Moreover we study a technique that employs choosing the sensors randomly from a probability distribution which can be optimized. Finally we will offer a new algorithm based on circular selection. Performance of the proposed algorithms is illustrated with numerical examples.</description><subject>algorithm</subject><subject>Cost function</subject><subject>Educational institutions</subject><subject>error covariance</subject><subject>offline optimization</subject><subject>Optimal scheduling</subject><subject>Robot sensing systems</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>sensor scheduling</subject><subject>Signal processing algorithms</subject><subject>sub-optimal</subject><issn>2164-7054</issn><isbn>9781467356343</isbn><isbn>1467356344</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KAzEURiMoWOo8gQvnBWbMzX8WLsowaqHgRtclmdzYaDsjyZTi2ytYVx8cDgc-Qu6AtgDU3q-zG5Mbu75vGQXeKmmtZOKCVFYbEEpzqbjgl2TBQIlGUymuSVXKB6WUgzHGygV5WNUjnuqCY5lyXYYdhuM-je_1AefdFOr4S0Mqc07-OGP4F0ecT1P-vCFX0e0LVuddkrfH_rV7bjYvT-tutWkSaDk33jpPfeSDE4oFGiX3ITipIDiBELSzKBhy5pSmMRikcTDSUO4BlQdm-JLc_nUTIm6_cjq4_L09H-Y_kvxMyA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Safarinejadian, Behrooz</creator><creator>Rahimi, Abdolah</creator><creator>Mozaffari, Mohiyeddin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>A new sensor scheduling method for distributed sensor network</title><author>Safarinejadian, Behrooz ; Rahimi, Abdolah ; Mozaffari, Mohiyeddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b9ab0bf3ca462d0f53bdda561da4e1d7a9e42e32a670fd8e0fc85803b1e6b1283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>algorithm</topic><topic>Cost function</topic><topic>Educational institutions</topic><topic>error covariance</topic><topic>offline optimization</topic><topic>Optimal scheduling</topic><topic>Robot sensing systems</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>sensor scheduling</topic><topic>Signal processing algorithms</topic><topic>sub-optimal</topic><toplevel>online_resources</toplevel><creatorcontrib>Safarinejadian, Behrooz</creatorcontrib><creatorcontrib>Rahimi, Abdolah</creatorcontrib><creatorcontrib>Mozaffari, Mohiyeddin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Safarinejadian, Behrooz</au><au>Rahimi, Abdolah</au><au>Mozaffari, Mohiyeddin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new sensor scheduling method for distributed sensor network</atitle><btitle>2013 21st Iranian Conference on Electrical Engineering (ICEE)</btitle><stitle>IranianCEE</stitle><date>2013-05</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2164-7054</issn><eisbn>9781467356343</eisbn><eisbn>1467356344</eisbn><abstract>In this paper, a sensor network is used to estimate the dynamic state of a system. At each time step, only one of the sensors is available. This means that at each time step only one sensor can send its measured data to a central node, in which all of processing is done. We want to provide an optimal algorithm for scheduling of sensor selection at every time step. Our goal is to select the appropriate sensor to reduce computations, optimize the energy consumption and enhance the network lifetime. To achieve this goal, we must reduce the error covariance. Two tree algorithms are used in this work: sliding window algorithm (motivated by the Viterbi algorithm) and thresholding algorithm. Moreover we study a technique that employs choosing the sensors randomly from a probability distribution which can be optimized. Finally we will offer a new algorithm based on circular selection. Performance of the proposed algorithms is illustrated with numerical examples.</abstract><pub>IEEE</pub><doi>10.1109/IranianCEE.2013.6599524</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7054
ispartof 2013 21st Iranian Conference on Electrical Engineering (ICEE), 2013, p.1-6
issn 2164-7054
language eng
recordid cdi_ieee_primary_6599524
source IEEE Electronic Library (IEL) Conference Proceedings
subjects algorithm
Cost function
Educational institutions
error covariance
offline optimization
Optimal scheduling
Robot sensing systems
Schedules
Scheduling
sensor scheduling
Signal processing algorithms
sub-optimal
title A new sensor scheduling method for distributed sensor network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20sensor%20scheduling%20method%20for%20distributed%20sensor%20network&rft.btitle=2013%2021st%20Iranian%20Conference%20on%20Electrical%20Engineering%20(ICEE)&rft.au=Safarinejadian,%20Behrooz&rft.date=2013-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2164-7054&rft_id=info:doi/10.1109/IranianCEE.2013.6599524&rft_dat=%3Cieee_6IE%3E6599524%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467356343&rft.eisbn_list=1467356344&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6599524&rfr_iscdi=true