Optimal path finding based on traffic information extraction from Twitter
Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extract...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Hasby, Muhammad Khodra, Masayu Leylia |
description | Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter. |
doi_str_mv | 10.1109/ICTSS.2013.6588076 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6588076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6588076</ieee_id><sourcerecordid>6588076</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-be596b61c1037a6aa757e1c09ff65d66d0f616b0f4b815fbb8c2069b58d7d56f3</originalsourceid><addsrcrecordid>eNo1T8tKxDAUjYigjv0B3eQHWu9tm5tmKcVHYWAW0_2QtIlGpg_SgPr3Fp1ZnQecwzmM3SNkiKAem7rd77McsMhIVBVIumCJkhWWUinAslSX7PYsCrxmybJ8AsAappzwhjW7OfpBH_ms4wd3fuz9-M6NXmzPp5HHoJ3zHfejm8Kgo189-7263R91YRp4--VjtOGOXTl9XGxywg1rX57b-i3d7l6b-mmbegUxNVYoMoQdQiE1aS2FtNiBco5ET9SDIyQDrjQVCmdM1eVAyoiql70gV2zYw3-tt9Ye5rCODz-H0_niF1UhTo8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal path finding based on traffic information extraction from Twitter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hasby, Muhammad ; Khodra, Masayu Leylia</creator><creatorcontrib>Hasby, Muhammad ; Khodra, Masayu Leylia</creatorcontrib><description>Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter.</description><identifier>ISBN: 1479901431</identifier><identifier>ISBN: 9781479901432</identifier><identifier>EISBN: 9781479901449</identifier><identifier>EISBN: 1479901458</identifier><identifier>EISBN: 147990144X</identifier><identifier>EISBN: 9781479901456</identifier><identifier>DOI: 10.1109/ICTSS.2013.6588076</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification approach ; Data mining ; Dictionaries ; Feature extraction ; IP networks ; optimal path finding ; Roads ; Twitter ; twitter-based traffic information extraction</subject><ispartof>International Conference on ICT for Smart Society, 2013, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6588076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6588076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hasby, Muhammad</creatorcontrib><creatorcontrib>Khodra, Masayu Leylia</creatorcontrib><title>Optimal path finding based on traffic information extraction from Twitter</title><title>International Conference on ICT for Smart Society</title><addtitle>ICTSS</addtitle><description>Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter.</description><subject>classification approach</subject><subject>Data mining</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>IP networks</subject><subject>optimal path finding</subject><subject>Roads</subject><subject>Twitter</subject><subject>twitter-based traffic information extraction</subject><isbn>1479901431</isbn><isbn>9781479901432</isbn><isbn>9781479901449</isbn><isbn>1479901458</isbn><isbn>147990144X</isbn><isbn>9781479901456</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8tKxDAUjYigjv0B3eQHWu9tm5tmKcVHYWAW0_2QtIlGpg_SgPr3Fp1ZnQecwzmM3SNkiKAem7rd77McsMhIVBVIumCJkhWWUinAslSX7PYsCrxmybJ8AsAappzwhjW7OfpBH_ms4wd3fuz9-M6NXmzPp5HHoJ3zHfejm8Kgo189-7263R91YRp4--VjtOGOXTl9XGxywg1rX57b-i3d7l6b-mmbegUxNVYoMoQdQiE1aS2FtNiBco5ET9SDIyQDrjQVCmdM1eVAyoiql70gV2zYw3-tt9Ye5rCODz-H0_niF1UhTo8</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Hasby, Muhammad</creator><creator>Khodra, Masayu Leylia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Optimal path finding based on traffic information extraction from Twitter</title><author>Hasby, Muhammad ; Khodra, Masayu Leylia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-be596b61c1037a6aa757e1c09ff65d66d0f616b0f4b815fbb8c2069b58d7d56f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>classification approach</topic><topic>Data mining</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>IP networks</topic><topic>optimal path finding</topic><topic>Roads</topic><topic>Twitter</topic><topic>twitter-based traffic information extraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Hasby, Muhammad</creatorcontrib><creatorcontrib>Khodra, Masayu Leylia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hasby, Muhammad</au><au>Khodra, Masayu Leylia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal path finding based on traffic information extraction from Twitter</atitle><btitle>International Conference on ICT for Smart Society</btitle><stitle>ICTSS</stitle><date>2013-06</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1479901431</isbn><isbn>9781479901432</isbn><eisbn>9781479901449</eisbn><eisbn>1479901458</eisbn><eisbn>147990144X</eisbn><eisbn>9781479901456</eisbn><abstract>Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter.</abstract><pub>IEEE</pub><doi>10.1109/ICTSS.2013.6588076</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1479901431 |
ispartof | International Conference on ICT for Smart Society, 2013, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6588076 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | classification approach Data mining Dictionaries Feature extraction IP networks optimal path finding Roads twitter-based traffic information extraction |
title | Optimal path finding based on traffic information extraction from Twitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20path%20finding%20based%20on%20traffic%20information%20extraction%20from%20Twitter&rft.btitle=International%20Conference%20on%20ICT%20for%20Smart%20Society&rft.au=Hasby,%20Muhammad&rft.date=2013-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1479901431&rft.isbn_list=9781479901432&rft_id=info:doi/10.1109/ICTSS.2013.6588076&rft_dat=%3Cieee_6IE%3E6588076%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479901449&rft.eisbn_list=1479901458&rft.eisbn_list=147990144X&rft.eisbn_list=9781479901456&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6588076&rfr_iscdi=true |