Optimal path finding based on traffic information extraction from Twitter

Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasby, Muhammad, Khodra, Masayu Leylia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Hasby, Muhammad
Khodra, Masayu Leylia
description Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter.
doi_str_mv 10.1109/ICTSS.2013.6588076
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6588076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6588076</ieee_id><sourcerecordid>6588076</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-be596b61c1037a6aa757e1c09ff65d66d0f616b0f4b815fbb8c2069b58d7d56f3</originalsourceid><addsrcrecordid>eNo1T8tKxDAUjYigjv0B3eQHWu9tm5tmKcVHYWAW0_2QtIlGpg_SgPr3Fp1ZnQecwzmM3SNkiKAem7rd77McsMhIVBVIumCJkhWWUinAslSX7PYsCrxmybJ8AsAappzwhjW7OfpBH_ms4wd3fuz9-M6NXmzPp5HHoJ3zHfejm8Kgo189-7263R91YRp4--VjtOGOXTl9XGxywg1rX57b-i3d7l6b-mmbegUxNVYoMoQdQiE1aS2FtNiBco5ET9SDIyQDrjQVCmdM1eVAyoiql70gV2zYw3-tt9Ye5rCODz-H0_niF1UhTo8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal path finding based on traffic information extraction from Twitter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hasby, Muhammad ; Khodra, Masayu Leylia</creator><creatorcontrib>Hasby, Muhammad ; Khodra, Masayu Leylia</creatorcontrib><description>Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter.</description><identifier>ISBN: 1479901431</identifier><identifier>ISBN: 9781479901432</identifier><identifier>EISBN: 9781479901449</identifier><identifier>EISBN: 1479901458</identifier><identifier>EISBN: 147990144X</identifier><identifier>EISBN: 9781479901456</identifier><identifier>DOI: 10.1109/ICTSS.2013.6588076</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification approach ; Data mining ; Dictionaries ; Feature extraction ; IP networks ; optimal path finding ; Roads ; Twitter ; twitter-based traffic information extraction</subject><ispartof>International Conference on ICT for Smart Society, 2013, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6588076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6588076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hasby, Muhammad</creatorcontrib><creatorcontrib>Khodra, Masayu Leylia</creatorcontrib><title>Optimal path finding based on traffic information extraction from Twitter</title><title>International Conference on ICT for Smart Society</title><addtitle>ICTSS</addtitle><description>Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter.</description><subject>classification approach</subject><subject>Data mining</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>IP networks</subject><subject>optimal path finding</subject><subject>Roads</subject><subject>Twitter</subject><subject>twitter-based traffic information extraction</subject><isbn>1479901431</isbn><isbn>9781479901432</isbn><isbn>9781479901449</isbn><isbn>1479901458</isbn><isbn>147990144X</isbn><isbn>9781479901456</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8tKxDAUjYigjv0B3eQHWu9tm5tmKcVHYWAW0_2QtIlGpg_SgPr3Fp1ZnQecwzmM3SNkiKAem7rd77McsMhIVBVIumCJkhWWUinAslSX7PYsCrxmybJ8AsAappzwhjW7OfpBH_ms4wd3fuz9-M6NXmzPp5HHoJ3zHfejm8Kgo189-7263R91YRp4--VjtOGOXTl9XGxywg1rX57b-i3d7l6b-mmbegUxNVYoMoQdQiE1aS2FtNiBco5ET9SDIyQDrjQVCmdM1eVAyoiql70gV2zYw3-tt9Ye5rCODz-H0_niF1UhTo8</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Hasby, Muhammad</creator><creator>Khodra, Masayu Leylia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Optimal path finding based on traffic information extraction from Twitter</title><author>Hasby, Muhammad ; Khodra, Masayu Leylia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-be596b61c1037a6aa757e1c09ff65d66d0f616b0f4b815fbb8c2069b58d7d56f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>classification approach</topic><topic>Data mining</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>IP networks</topic><topic>optimal path finding</topic><topic>Roads</topic><topic>Twitter</topic><topic>twitter-based traffic information extraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Hasby, Muhammad</creatorcontrib><creatorcontrib>Khodra, Masayu Leylia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hasby, Muhammad</au><au>Khodra, Masayu Leylia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal path finding based on traffic information extraction from Twitter</atitle><btitle>International Conference on ICT for Smart Society</btitle><stitle>ICTSS</stitle><date>2013-06</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1479901431</isbn><isbn>9781479901432</isbn><eisbn>9781479901449</eisbn><eisbn>1479901458</eisbn><eisbn>147990144X</eisbn><eisbn>9781479901456</eisbn><abstract>Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter.</abstract><pub>IEEE</pub><doi>10.1109/ICTSS.2013.6588076</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1479901431
ispartof International Conference on ICT for Smart Society, 2013, p.1-5
issn
language eng
recordid cdi_ieee_primary_6588076
source IEEE Electronic Library (IEL) Conference Proceedings
subjects classification approach
Data mining
Dictionaries
Feature extraction
IP networks
optimal path finding
Roads
Twitter
twitter-based traffic information extraction
title Optimal path finding based on traffic information extraction from Twitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20path%20finding%20based%20on%20traffic%20information%20extraction%20from%20Twitter&rft.btitle=International%20Conference%20on%20ICT%20for%20Smart%20Society&rft.au=Hasby,%20Muhammad&rft.date=2013-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1479901431&rft.isbn_list=9781479901432&rft_id=info:doi/10.1109/ICTSS.2013.6588076&rft_dat=%3Cieee_6IE%3E6588076%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479901449&rft.eisbn_list=1479901458&rft.eisbn_list=147990144X&rft.eisbn_list=9781479901456&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6588076&rfr_iscdi=true