High-Performance Architecture for the Conjugate Gradient Solver on FPGAs

The conjugate gradient (CG) solver is an important algorithm for solving the symmetric positive define systems. However, existing CG architectures on field-programmable gate arrays (FPGAs) either need aggressive zero padding or can only be applied for small matrices and particular matrix sparsity pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2013-11, Vol.60 (11), p.791-795
Hauptverfasser: Wu, Guiming, Xie, Xianghui, Dou, Yong, Wang, Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conjugate gradient (CG) solver is an important algorithm for solving the symmetric positive define systems. However, existing CG architectures on field-programmable gate arrays (FPGAs) either need aggressive zero padding or can only be applied for small matrices and particular matrix sparsity patterns. This brief proposes a high-performance architecture for the CG solver on FPGAs, which can handle sparse linear systems with arbitrary size and sparsity pattern. Furthermore, it does not need aggressive zero padding. Our CG architecture mainly consists of a high-throughput sparse matrix-vector multiplication design including a multi-output adder tree, a reduction circuit, and a sum sequencer. Our experimental results demonstrate that our CG architecture can achieve speedup of 4.62X-9.24X on a Virtex5-330 FPGA, relative to a software implementation.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2013.2278111