Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates
A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | |
container_start_page | 30 |
container_title | |
container_volume | |
creator | Pisharady, Pramod Kumar Saerbeck, Martin |
description | A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation invariance. Dynamic time warping of the signal sequence is done to achieve gesture size and speed invariance, and to enhance the gesture detection capability. The gestures are detected by hierarchical thresholding of the gesture probability and warping distance. Classification of gestures is done by multi-class probability estimates. The proposed algorithm is tested using a 12 class alphabet gesture database having variations in size, orientation, and speed. The algorithm provided 97.72% detection and 96.85% recognition accuracies respectively. A comparison of the proposed method with existing approaches (for detection as well as recognition) shows its better performance. |
doi_str_mv | 10.1109/CIMSIVP.2013.6583844 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6583844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6583844</ieee_id><sourcerecordid>6583844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-432c485985079f3c2b787d6b921418a5da2639a594d3b1706424ba15760494dc3</originalsourceid><addsrcrecordid>eNo1kNtKxDAURSMiqGO_QB_yA61Jc3-Uok5hRPH2OiRppkR6I0mR-Xs7Oj4d1t777AMHgBuMCoyRuq3qp7f686UoESYFZ5JISk_AJaZcEKawIKcgU0L-M0fnIIvxCyG0rHOs5AXwr6OZY4Kti2kODjYuOZv8OEA9NDA4O7aD_-U5-qGFzX7Qvbcw-d7Bbx2mg3iI9nOXfG47HSOcwmi08Z1Pe7j0-l4nF6_A2U530WXHuQIfD_fv1TrfPD_W1d0mt5jilFNSWiqZkgwJtSO2NEKKhhtVLrbUrNElJ0ozRRtisECcltRozARHdNEsWYHrv17vnNtOYbke9tvjd8gPuIhaTQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pisharady, Pramod Kumar ; Saerbeck, Martin</creator><creatorcontrib>Pisharady, Pramod Kumar ; Saerbeck, Martin</creatorcontrib><description>A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation invariance. Dynamic time warping of the signal sequence is done to achieve gesture size and speed invariance, and to enhance the gesture detection capability. The gestures are detected by hierarchical thresholding of the gesture probability and warping distance. Classification of gestures is done by multi-class probability estimates. The proposed algorithm is tested using a 12 class alphabet gesture database having variations in size, orientation, and speed. The algorithm provided 97.72% detection and 96.85% recognition accuracies respectively. A comparison of the proposed method with existing approaches (for detection as well as recognition) shows its better performance.</description><identifier>ISBN: 9781467359160</identifier><identifier>ISBN: 1467359165</identifier><identifier>EISBN: 1467359173</identifier><identifier>EISBN: 9781467359177</identifier><identifier>DOI: 10.1109/CIMSIVP.2013.6583844</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; alphabet recognition ; directional features ; dynamic time warping ; Feature extraction ; Gesture recognition ; Hand gesture recognition ; Heuristic algorithms ; hierarchical thresholding ; probability estimates ; Quaternions ; Robustness ; Vectors</subject><ispartof>2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP), 2013, p.30-36</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c141t-432c485985079f3c2b787d6b921418a5da2639a594d3b1706424ba15760494dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6583844$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6583844$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pisharady, Pramod Kumar</creatorcontrib><creatorcontrib>Saerbeck, Martin</creatorcontrib><title>Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates</title><title>2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)</title><addtitle>CIMSIVP</addtitle><description>A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation invariance. Dynamic time warping of the signal sequence is done to achieve gesture size and speed invariance, and to enhance the gesture detection capability. The gestures are detected by hierarchical thresholding of the gesture probability and warping distance. Classification of gestures is done by multi-class probability estimates. The proposed algorithm is tested using a 12 class alphabet gesture database having variations in size, orientation, and speed. The algorithm provided 97.72% detection and 96.85% recognition accuracies respectively. A comparison of the proposed method with existing approaches (for detection as well as recognition) shows its better performance.</description><subject>Accuracy</subject><subject>alphabet recognition</subject><subject>directional features</subject><subject>dynamic time warping</subject><subject>Feature extraction</subject><subject>Gesture recognition</subject><subject>Hand gesture recognition</subject><subject>Heuristic algorithms</subject><subject>hierarchical thresholding</subject><subject>probability estimates</subject><subject>Quaternions</subject><subject>Robustness</subject><subject>Vectors</subject><isbn>9781467359160</isbn><isbn>1467359165</isbn><isbn>1467359173</isbn><isbn>9781467359177</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKxDAURSMiqGO_QB_yA61Jc3-Uok5hRPH2OiRppkR6I0mR-Xs7Oj4d1t777AMHgBuMCoyRuq3qp7f686UoESYFZ5JISk_AJaZcEKawIKcgU0L-M0fnIIvxCyG0rHOs5AXwr6OZY4Kti2kODjYuOZv8OEA9NDA4O7aD_-U5-qGFzX7Qvbcw-d7Bbx2mg3iI9nOXfG47HSOcwmi08Z1Pe7j0-l4nF6_A2U530WXHuQIfD_fv1TrfPD_W1d0mt5jilFNSWiqZkgwJtSO2NEKKhhtVLrbUrNElJ0ozRRtisECcltRozARHdNEsWYHrv17vnNtOYbke9tvjd8gPuIhaTQ</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Pisharady, Pramod Kumar</creator><creator>Saerbeck, Martin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates</title><author>Pisharady, Pramod Kumar ; Saerbeck, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-432c485985079f3c2b787d6b921418a5da2639a594d3b1706424ba15760494dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>alphabet recognition</topic><topic>directional features</topic><topic>dynamic time warping</topic><topic>Feature extraction</topic><topic>Gesture recognition</topic><topic>Hand gesture recognition</topic><topic>Heuristic algorithms</topic><topic>hierarchical thresholding</topic><topic>probability estimates</topic><topic>Quaternions</topic><topic>Robustness</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Pisharady, Pramod Kumar</creatorcontrib><creatorcontrib>Saerbeck, Martin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pisharady, Pramod Kumar</au><au>Saerbeck, Martin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates</atitle><btitle>2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)</btitle><stitle>CIMSIVP</stitle><date>2013-04</date><risdate>2013</risdate><spage>30</spage><epage>36</epage><pages>30-36</pages><isbn>9781467359160</isbn><isbn>1467359165</isbn><eisbn>1467359173</eisbn><eisbn>9781467359177</eisbn><abstract>A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation invariance. Dynamic time warping of the signal sequence is done to achieve gesture size and speed invariance, and to enhance the gesture detection capability. The gestures are detected by hierarchical thresholding of the gesture probability and warping distance. Classification of gestures is done by multi-class probability estimates. The proposed algorithm is tested using a 12 class alphabet gesture database having variations in size, orientation, and speed. The algorithm provided 97.72% detection and 96.85% recognition accuracies respectively. A comparison of the proposed method with existing approaches (for detection as well as recognition) shows its better performance.</abstract><pub>IEEE</pub><doi>10.1109/CIMSIVP.2013.6583844</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467359160 |
ispartof | 2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP), 2013, p.30-36 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6583844 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy alphabet recognition directional features dynamic time warping Feature extraction Gesture recognition Hand gesture recognition Heuristic algorithms hierarchical thresholding probability estimates Quaternions Robustness Vectors |
title | Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20gesture%20detection%20and%20recognition%20using%20dynamic%20time%20warping%20and%20multi-class%20probability%20estimates&rft.btitle=2013%20IEEE%20Symposium%20on%20Computational%20Intelligence%20for%20Multimedia,%20Signal%20and%20Vision%20Processing%20(CIMSIVP)&rft.au=Pisharady,%20Pramod%20Kumar&rft.date=2013-04&rft.spage=30&rft.epage=36&rft.pages=30-36&rft.isbn=9781467359160&rft.isbn_list=1467359165&rft_id=info:doi/10.1109/CIMSIVP.2013.6583844&rft_dat=%3Cieee_6IE%3E6583844%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467359173&rft.eisbn_list=9781467359177&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6583844&rfr_iscdi=true |