Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates

A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pisharady, Pramod Kumar, Saerbeck, Martin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue
container_start_page 30
container_title
container_volume
creator Pisharady, Pramod Kumar
Saerbeck, Martin
description A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation invariance. Dynamic time warping of the signal sequence is done to achieve gesture size and speed invariance, and to enhance the gesture detection capability. The gestures are detected by hierarchical thresholding of the gesture probability and warping distance. Classification of gestures is done by multi-class probability estimates. The proposed algorithm is tested using a 12 class alphabet gesture database having variations in size, orientation, and speed. The algorithm provided 97.72% detection and 96.85% recognition accuracies respectively. A comparison of the proposed method with existing approaches (for detection as well as recognition) shows its better performance.
doi_str_mv 10.1109/CIMSIVP.2013.6583844
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6583844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6583844</ieee_id><sourcerecordid>6583844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-432c485985079f3c2b787d6b921418a5da2639a594d3b1706424ba15760494dc3</originalsourceid><addsrcrecordid>eNo1kNtKxDAURSMiqGO_QB_yA61Jc3-Uok5hRPH2OiRppkR6I0mR-Xs7Oj4d1t777AMHgBuMCoyRuq3qp7f686UoESYFZ5JISk_AJaZcEKawIKcgU0L-M0fnIIvxCyG0rHOs5AXwr6OZY4Kti2kODjYuOZv8OEA9NDA4O7aD_-U5-qGFzX7Qvbcw-d7Bbx2mg3iI9nOXfG47HSOcwmi08Z1Pe7j0-l4nF6_A2U530WXHuQIfD_fv1TrfPD_W1d0mt5jilFNSWiqZkgwJtSO2NEKKhhtVLrbUrNElJ0ozRRtisECcltRozARHdNEsWYHrv17vnNtOYbke9tvjd8gPuIhaTQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pisharady, Pramod Kumar ; Saerbeck, Martin</creator><creatorcontrib>Pisharady, Pramod Kumar ; Saerbeck, Martin</creatorcontrib><description>A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation invariance. Dynamic time warping of the signal sequence is done to achieve gesture size and speed invariance, and to enhance the gesture detection capability. The gestures are detected by hierarchical thresholding of the gesture probability and warping distance. Classification of gestures is done by multi-class probability estimates. The proposed algorithm is tested using a 12 class alphabet gesture database having variations in size, orientation, and speed. The algorithm provided 97.72% detection and 96.85% recognition accuracies respectively. A comparison of the proposed method with existing approaches (for detection as well as recognition) shows its better performance.</description><identifier>ISBN: 9781467359160</identifier><identifier>ISBN: 1467359165</identifier><identifier>EISBN: 1467359173</identifier><identifier>EISBN: 9781467359177</identifier><identifier>DOI: 10.1109/CIMSIVP.2013.6583844</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; alphabet recognition ; directional features ; dynamic time warping ; Feature extraction ; Gesture recognition ; Hand gesture recognition ; Heuristic algorithms ; hierarchical thresholding ; probability estimates ; Quaternions ; Robustness ; Vectors</subject><ispartof>2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP), 2013, p.30-36</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c141t-432c485985079f3c2b787d6b921418a5da2639a594d3b1706424ba15760494dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6583844$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6583844$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pisharady, Pramod Kumar</creatorcontrib><creatorcontrib>Saerbeck, Martin</creatorcontrib><title>Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates</title><title>2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)</title><addtitle>CIMSIVP</addtitle><description>A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation invariance. Dynamic time warping of the signal sequence is done to achieve gesture size and speed invariance, and to enhance the gesture detection capability. The gestures are detected by hierarchical thresholding of the gesture probability and warping distance. Classification of gestures is done by multi-class probability estimates. The proposed algorithm is tested using a 12 class alphabet gesture database having variations in size, orientation, and speed. The algorithm provided 97.72% detection and 96.85% recognition accuracies respectively. A comparison of the proposed method with existing approaches (for detection as well as recognition) shows its better performance.</description><subject>Accuracy</subject><subject>alphabet recognition</subject><subject>directional features</subject><subject>dynamic time warping</subject><subject>Feature extraction</subject><subject>Gesture recognition</subject><subject>Hand gesture recognition</subject><subject>Heuristic algorithms</subject><subject>hierarchical thresholding</subject><subject>probability estimates</subject><subject>Quaternions</subject><subject>Robustness</subject><subject>Vectors</subject><isbn>9781467359160</isbn><isbn>1467359165</isbn><isbn>1467359173</isbn><isbn>9781467359177</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKxDAURSMiqGO_QB_yA61Jc3-Uok5hRPH2OiRppkR6I0mR-Xs7Oj4d1t777AMHgBuMCoyRuq3qp7f686UoESYFZ5JISk_AJaZcEKawIKcgU0L-M0fnIIvxCyG0rHOs5AXwr6OZY4Kti2kODjYuOZv8OEA9NDA4O7aD_-U5-qGFzX7Qvbcw-d7Bbx2mg3iI9nOXfG47HSOcwmi08Z1Pe7j0-l4nF6_A2U530WXHuQIfD_fv1TrfPD_W1d0mt5jilFNSWiqZkgwJtSO2NEKKhhtVLrbUrNElJ0ozRRtisECcltRozARHdNEsWYHrv17vnNtOYbke9tvjd8gPuIhaTQ</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Pisharady, Pramod Kumar</creator><creator>Saerbeck, Martin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates</title><author>Pisharady, Pramod Kumar ; Saerbeck, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-432c485985079f3c2b787d6b921418a5da2639a594d3b1706424ba15760494dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>alphabet recognition</topic><topic>directional features</topic><topic>dynamic time warping</topic><topic>Feature extraction</topic><topic>Gesture recognition</topic><topic>Hand gesture recognition</topic><topic>Heuristic algorithms</topic><topic>hierarchical thresholding</topic><topic>probability estimates</topic><topic>Quaternions</topic><topic>Robustness</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Pisharady, Pramod Kumar</creatorcontrib><creatorcontrib>Saerbeck, Martin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pisharady, Pramod Kumar</au><au>Saerbeck, Martin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates</atitle><btitle>2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)</btitle><stitle>CIMSIVP</stitle><date>2013-04</date><risdate>2013</risdate><spage>30</spage><epage>36</epage><pages>30-36</pages><isbn>9781467359160</isbn><isbn>1467359165</isbn><eisbn>1467359173</eisbn><eisbn>9781467359177</eisbn><abstract>A robust hand gesture detection and recognition algorithm using dynamic time warping and multi-class probability estimates is proposed. Quaternion based directional features of the hand are extracted using the color-depth camera Kinect. The directional features utilized have position and orientation invariance. Dynamic time warping of the signal sequence is done to achieve gesture size and speed invariance, and to enhance the gesture detection capability. The gestures are detected by hierarchical thresholding of the gesture probability and warping distance. Classification of gestures is done by multi-class probability estimates. The proposed algorithm is tested using a 12 class alphabet gesture database having variations in size, orientation, and speed. The algorithm provided 97.72% detection and 96.85% recognition accuracies respectively. A comparison of the proposed method with existing approaches (for detection as well as recognition) shows its better performance.</abstract><pub>IEEE</pub><doi>10.1109/CIMSIVP.2013.6583844</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467359160
ispartof 2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP), 2013, p.30-36
issn
language eng
recordid cdi_ieee_primary_6583844
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
alphabet recognition
directional features
dynamic time warping
Feature extraction
Gesture recognition
Hand gesture recognition
Heuristic algorithms
hierarchical thresholding
probability estimates
Quaternions
Robustness
Vectors
title Robust gesture detection and recognition using dynamic time warping and multi-class probability estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20gesture%20detection%20and%20recognition%20using%20dynamic%20time%20warping%20and%20multi-class%20probability%20estimates&rft.btitle=2013%20IEEE%20Symposium%20on%20Computational%20Intelligence%20for%20Multimedia,%20Signal%20and%20Vision%20Processing%20(CIMSIVP)&rft.au=Pisharady,%20Pramod%20Kumar&rft.date=2013-04&rft.spage=30&rft.epage=36&rft.pages=30-36&rft.isbn=9781467359160&rft.isbn_list=1467359165&rft_id=info:doi/10.1109/CIMSIVP.2013.6583844&rft_dat=%3Cieee_6IE%3E6583844%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467359173&rft.eisbn_list=9781467359177&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6583844&rfr_iscdi=true