Connecting network graph structure to linear-system zero structure

We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network&#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abad Torres, Jackeline, Roy, Sandip
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6119
container_issue
container_start_page 6114
container_title
container_volume
creator Abad Torres, Jackeline
Roy, Sandip
description We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network's graph matrix, using the special coordinate basis for linear system. These algebraic characterizations are then used to identify relationships between features of the network's graph topology and the state matrix of its finite zero dynamics.
doi_str_mv 10.1109/ACC.2013.6580797
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6580797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6580797</ieee_id><sourcerecordid>6580797</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5947e6f4ed1eb0d1e1504660eed87e99aa6bb6fbda07427c23fb7aaf82a824a33</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1LIi3dI7HxD6T42o6vvSwRL6kSG1hXTnJTAm1S2a5Q-XoiUcRmZnGk0dEwdg1iDiDc7aIs51KAmpvCCnR4wmYOLWh0TgAW6pRlUqHNC2vgjE3-AJpzlgnUKgcD7pJNYvwQApwzImN35dD3VKeuX_Oe0tcQPvk6-N07jyns67QPxNPAN11PPuTxEBNt-TeF4Z9fsYvWbyLNjj1lbw_3r-VTvnx5fC4Xy7wb5VJeOI1kWk0NUCXGgEJoYwRRY5Gc895UlWmrxo-uEmup2gq9b630Vmqv1JTd_O52RLTahW7rw2F1_EL9AJYYT8Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Connecting network graph structure to linear-system zero structure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abad Torres, Jackeline ; Roy, Sandip</creator><creatorcontrib>Abad Torres, Jackeline ; Roy, Sandip</creatorcontrib><description>We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network's graph matrix, using the special coordinate basis for linear system. These algebraic characterizations are then used to identify relationships between features of the network's graph topology and the state matrix of its finite zero dynamics.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1479901776</identifier><identifier>ISBN: 9781479901777</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781479901753</identifier><identifier>EISBN: 147990175X</identifier><identifier>EISBN: 1479901784</identifier><identifier>EISBN: 9781479901784</identifier><identifier>DOI: 10.1109/ACC.2013.6580797</identifier><language>eng</language><publisher>IEEE</publisher><subject>Differential equations ; Equations ; Estimation ; Mathematical model ; Network topology ; Topology ; Vectors</subject><ispartof>2013 American Control Conference, 2013, p.6114-6119</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6580797$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6580797$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abad Torres, Jackeline</creatorcontrib><creatorcontrib>Roy, Sandip</creatorcontrib><title>Connecting network graph structure to linear-system zero structure</title><title>2013 American Control Conference</title><addtitle>ACC</addtitle><description>We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network's graph matrix, using the special coordinate basis for linear system. These algebraic characterizations are then used to identify relationships between features of the network's graph topology and the state matrix of its finite zero dynamics.</description><subject>Differential equations</subject><subject>Equations</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Network topology</subject><subject>Topology</subject><subject>Vectors</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1479901776</isbn><isbn>9781479901777</isbn><isbn>9781479901753</isbn><isbn>147990175X</isbn><isbn>1479901784</isbn><isbn>9781479901784</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAURM1LIi3dI7HxD6T42o6vvSwRL6kSG1hXTnJTAm1S2a5Q-XoiUcRmZnGk0dEwdg1iDiDc7aIs51KAmpvCCnR4wmYOLWh0TgAW6pRlUqHNC2vgjE3-AJpzlgnUKgcD7pJNYvwQApwzImN35dD3VKeuX_Oe0tcQPvk6-N07jyns67QPxNPAN11PPuTxEBNt-TeF4Z9fsYvWbyLNjj1lbw_3r-VTvnx5fC4Xy7wb5VJeOI1kWk0NUCXGgEJoYwRRY5Gc895UlWmrxo-uEmup2gq9b630Vmqv1JTd_O52RLTahW7rw2F1_EL9AJYYT8Y</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Abad Torres, Jackeline</creator><creator>Roy, Sandip</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201306</creationdate><title>Connecting network graph structure to linear-system zero structure</title><author>Abad Torres, Jackeline ; Roy, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5947e6f4ed1eb0d1e1504660eed87e99aa6bb6fbda07427c23fb7aaf82a824a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Differential equations</topic><topic>Equations</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Network topology</topic><topic>Topology</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Abad Torres, Jackeline</creatorcontrib><creatorcontrib>Roy, Sandip</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abad Torres, Jackeline</au><au>Roy, Sandip</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Connecting network graph structure to linear-system zero structure</atitle><btitle>2013 American Control Conference</btitle><stitle>ACC</stitle><date>2013-06</date><risdate>2013</risdate><spage>6114</spage><epage>6119</epage><pages>6114-6119</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1479901776</isbn><isbn>9781479901777</isbn><eisbn>9781479901753</eisbn><eisbn>147990175X</eisbn><eisbn>1479901784</eisbn><eisbn>9781479901784</eisbn><abstract>We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network's graph matrix, using the special coordinate basis for linear system. These algebraic characterizations are then used to identify relationships between features of the network's graph topology and the state matrix of its finite zero dynamics.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2013.6580797</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2013 American Control Conference, 2013, p.6114-6119
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_6580797
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Differential equations
Equations
Estimation
Mathematical model
Network topology
Topology
Vectors
title Connecting network graph structure to linear-system zero structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Connecting%20network%20graph%20structure%20to%20linear-system%20zero%20structure&rft.btitle=2013%20American%20Control%20Conference&rft.au=Abad%20Torres,%20Jackeline&rft.date=2013-06&rft.spage=6114&rft.epage=6119&rft.pages=6114-6119&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1479901776&rft.isbn_list=9781479901777&rft_id=info:doi/10.1109/ACC.2013.6580797&rft_dat=%3Cieee_6IE%3E6580797%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479901753&rft.eisbn_list=147990175X&rft.eisbn_list=1479901784&rft.eisbn_list=9781479901784&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6580797&rfr_iscdi=true