Connecting network graph structure to linear-system zero structure
We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6119 |
---|---|
container_issue | |
container_start_page | 6114 |
container_title | |
container_volume | |
creator | Abad Torres, Jackeline Roy, Sandip |
description | We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network's graph matrix, using the special coordinate basis for linear system. These algebraic characterizations are then used to identify relationships between features of the network's graph topology and the state matrix of its finite zero dynamics. |
doi_str_mv | 10.1109/ACC.2013.6580797 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6580797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6580797</ieee_id><sourcerecordid>6580797</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5947e6f4ed1eb0d1e1504660eed87e99aa6bb6fbda07427c23fb7aaf82a824a33</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1LIi3dI7HxD6T42o6vvSwRL6kSG1hXTnJTAm1S2a5Q-XoiUcRmZnGk0dEwdg1iDiDc7aIs51KAmpvCCnR4wmYOLWh0TgAW6pRlUqHNC2vgjE3-AJpzlgnUKgcD7pJNYvwQApwzImN35dD3VKeuX_Oe0tcQPvk6-N07jyns67QPxNPAN11PPuTxEBNt-TeF4Z9fsYvWbyLNjj1lbw_3r-VTvnx5fC4Xy7wb5VJeOI1kWk0NUCXGgEJoYwRRY5Gc895UlWmrxo-uEmup2gq9b630Vmqv1JTd_O52RLTahW7rw2F1_EL9AJYYT8Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Connecting network graph structure to linear-system zero structure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abad Torres, Jackeline ; Roy, Sandip</creator><creatorcontrib>Abad Torres, Jackeline ; Roy, Sandip</creatorcontrib><description>We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network's graph matrix, using the special coordinate basis for linear system. These algebraic characterizations are then used to identify relationships between features of the network's graph topology and the state matrix of its finite zero dynamics.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1479901776</identifier><identifier>ISBN: 9781479901777</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781479901753</identifier><identifier>EISBN: 147990175X</identifier><identifier>EISBN: 1479901784</identifier><identifier>EISBN: 9781479901784</identifier><identifier>DOI: 10.1109/ACC.2013.6580797</identifier><language>eng</language><publisher>IEEE</publisher><subject>Differential equations ; Equations ; Estimation ; Mathematical model ; Network topology ; Topology ; Vectors</subject><ispartof>2013 American Control Conference, 2013, p.6114-6119</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6580797$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6580797$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abad Torres, Jackeline</creatorcontrib><creatorcontrib>Roy, Sandip</creatorcontrib><title>Connecting network graph structure to linear-system zero structure</title><title>2013 American Control Conference</title><addtitle>ACC</addtitle><description>We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network's graph matrix, using the special coordinate basis for linear system. These algebraic characterizations are then used to identify relationships between features of the network's graph topology and the state matrix of its finite zero dynamics.</description><subject>Differential equations</subject><subject>Equations</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Network topology</subject><subject>Topology</subject><subject>Vectors</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1479901776</isbn><isbn>9781479901777</isbn><isbn>9781479901753</isbn><isbn>147990175X</isbn><isbn>1479901784</isbn><isbn>9781479901784</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAURM1LIi3dI7HxD6T42o6vvSwRL6kSG1hXTnJTAm1S2a5Q-XoiUcRmZnGk0dEwdg1iDiDc7aIs51KAmpvCCnR4wmYOLWh0TgAW6pRlUqHNC2vgjE3-AJpzlgnUKgcD7pJNYvwQApwzImN35dD3VKeuX_Oe0tcQPvk6-N07jyns67QPxNPAN11PPuTxEBNt-TeF4Z9fsYvWbyLNjj1lbw_3r-VTvnx5fC4Xy7wb5VJeOI1kWk0NUCXGgEJoYwRRY5Gc895UlWmrxo-uEmup2gq9b630Vmqv1JTd_O52RLTahW7rw2F1_EL9AJYYT8Y</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Abad Torres, Jackeline</creator><creator>Roy, Sandip</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201306</creationdate><title>Connecting network graph structure to linear-system zero structure</title><author>Abad Torres, Jackeline ; Roy, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5947e6f4ed1eb0d1e1504660eed87e99aa6bb6fbda07427c23fb7aaf82a824a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Differential equations</topic><topic>Equations</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Network topology</topic><topic>Topology</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Abad Torres, Jackeline</creatorcontrib><creatorcontrib>Roy, Sandip</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abad Torres, Jackeline</au><au>Roy, Sandip</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Connecting network graph structure to linear-system zero structure</atitle><btitle>2013 American Control Conference</btitle><stitle>ACC</stitle><date>2013-06</date><risdate>2013</risdate><spage>6114</spage><epage>6119</epage><pages>6114-6119</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1479901776</isbn><isbn>9781479901777</isbn><eisbn>9781479901753</eisbn><eisbn>147990175X</eisbn><eisbn>1479901784</eisbn><eisbn>9781479901784</eisbn><abstract>We examine linear network dynamics in which an input can be applied at only one network component and measurements can only be made at one (in general different) component. The infinite-zero- and finite-invariant-zero-structure of these dynamics are characterized explicitly in terms of the network's graph matrix, using the special coordinate basis for linear system. These algebraic characterizations are then used to identify relationships between features of the network's graph topology and the state matrix of its finite zero dynamics.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2013.6580797</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2013 American Control Conference, 2013, p.6114-6119 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_6580797 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Differential equations Equations Estimation Mathematical model Network topology Topology Vectors |
title | Connecting network graph structure to linear-system zero structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Connecting%20network%20graph%20structure%20to%20linear-system%20zero%20structure&rft.btitle=2013%20American%20Control%20Conference&rft.au=Abad%20Torres,%20Jackeline&rft.date=2013-06&rft.spage=6114&rft.epage=6119&rft.pages=6114-6119&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1479901776&rft.isbn_list=9781479901777&rft_id=info:doi/10.1109/ACC.2013.6580797&rft_dat=%3Cieee_6IE%3E6580797%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479901753&rft.eisbn_list=147990175X&rft.eisbn_list=1479901784&rft.eisbn_list=9781479901784&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6580797&rfr_iscdi=true |