Distributed Throughput Maximization in Wireless Networks Using the Stability Region

In this paper, a game-theoretical framework for the design of distributed algorithms that control the transmission range (TR) of nodes in order to maximize throughput in Wireless Multihop Networks (WMN) is proposed. It is based on the stability region of the link-scheduling policy adopted for the ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2014-07, Vol.25 (7), p.1713-1723
Hauptverfasser: Vejarano, Gustavo, Dexiang Wang, Dubey, Ritwik, McNair, Janise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1723
container_issue 7
container_start_page 1713
container_title IEEE transactions on parallel and distributed systems
container_volume 25
creator Vejarano, Gustavo
Dexiang Wang
Dubey, Ritwik
McNair, Janise
description In this paper, a game-theoretical framework for the design of distributed algorithms that control the transmission range (TR) of nodes in order to maximize throughput in Wireless Multihop Networks (WMN) is proposed. It is based on the stability region of the link-scheduling policy adopted for the network. The stability region is defined as the set of input-packet rates under which the queues in the network are stable (i.e., positive recurrent). The goal of the TR-control algorithms is to adapt the stability region to a given set of end-to-end flows. In the algorithms, the flows control distributively the nodes' TRs using the stability region in order to enable higher end-to-end packet rates while guaranteeing stability. In order to demonstrate how the algorithms can be designed using the proposed game-theoretical framework, a new TR-control algorithm for IEEE-802.16 WMNs is developed. Its convergence is demonstrated, and a performance bound is calculated. Finally, simulation results show that the algorithm is able to find the optimal TRs more effectively. The TRs achieve throughput levels that are at least 90 percent of the optimal throughput for 72 percent of the simulated scenarios, whereas the classic approach of spatial-reuse maximization does this for 62 percent of the scenarios.
doi_str_mv 10.1109/TPDS.2013.202
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6579614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6579614</ieee_id><sourcerecordid>1559721944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-366f70f2a736d06e2c260cac4b2cad9a0907c65e48c5cd2cd5927fc6df6873913</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQpjEwsllhYUmzHseMRlU-pfIi2Yoxc59K6pEmxHUH59bgqYmC5u-HR6e5F6JSSAaVEXU5erscDRmgaC9tDPZplecJonu7HmfAsUYyqQ3Tk_ZIQyjPCe2h8bX1wdtYFKPFk4dpuvlh3AT_qL7uy3zrYtsG2wW_WQQ3e4ycIn61793jqbTPHYQF4HPTM1jZs8CvMoz9GB5WuPZz89j6a3t5MhvfJ6PnuYXg1SgyTPCSpEJUkFdMyFSURwAwTxGjDZ8zoUmmiiDQiA56bzJTMlJlisjKirEQuU0XTPrrY7V279qMDH4qV9QbqWjfQdr6I_ysZX-Y80vN_dNl2ronXRcUFoZILEVWyU8a13juoirWzK-02BSXFNuJiG3GxjTgWFv3ZzlsA-LMik0pQnv4AEwN3lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546017466</pqid></control><display><type>article</type><title>Distributed Throughput Maximization in Wireless Networks Using the Stability Region</title><source>IEEE Electronic Library (IEL)</source><creator>Vejarano, Gustavo ; Dexiang Wang ; Dubey, Ritwik ; McNair, Janise</creator><creatorcontrib>Vejarano, Gustavo ; Dexiang Wang ; Dubey, Ritwik ; McNair, Janise</creatorcontrib><description>In this paper, a game-theoretical framework for the design of distributed algorithms that control the transmission range (TR) of nodes in order to maximize throughput in Wireless Multihop Networks (WMN) is proposed. It is based on the stability region of the link-scheduling policy adopted for the network. The stability region is defined as the set of input-packet rates under which the queues in the network are stable (i.e., positive recurrent). The goal of the TR-control algorithms is to adapt the stability region to a given set of end-to-end flows. In the algorithms, the flows control distributively the nodes' TRs using the stability region in order to enable higher end-to-end packet rates while guaranteeing stability. In order to demonstrate how the algorithms can be designed using the proposed game-theoretical framework, a new TR-control algorithm for IEEE-802.16 WMNs is developed. Its convergence is demonstrated, and a performance bound is calculated. Finally, simulation results show that the algorithm is able to find the optimal TRs more effectively. The TRs achieve throughput levels that are at least 90 percent of the optimal throughput for 72 percent of the simulated scenarios, whereas the classic approach of spatial-reuse maximization does this for 62 percent of the scenarios.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2013.202</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer simulation ; Control algorithms ; Convergence ; Games ; Mathematical analysis ; Maximization ; Networks ; Optimization ; potential games ; Schedules ; Scheduling ; Stability ; Stability criteria ; stability region ; Throughput ; transmission power ; Transmission-range control ; Vectors</subject><ispartof>IEEE transactions on parallel and distributed systems, 2014-07, Vol.25 (7), p.1713-1723</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-366f70f2a736d06e2c260cac4b2cad9a0907c65e48c5cd2cd5927fc6df6873913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6579614$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6579614$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vejarano, Gustavo</creatorcontrib><creatorcontrib>Dexiang Wang</creatorcontrib><creatorcontrib>Dubey, Ritwik</creatorcontrib><creatorcontrib>McNair, Janise</creatorcontrib><title>Distributed Throughput Maximization in Wireless Networks Using the Stability Region</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>In this paper, a game-theoretical framework for the design of distributed algorithms that control the transmission range (TR) of nodes in order to maximize throughput in Wireless Multihop Networks (WMN) is proposed. It is based on the stability region of the link-scheduling policy adopted for the network. The stability region is defined as the set of input-packet rates under which the queues in the network are stable (i.e., positive recurrent). The goal of the TR-control algorithms is to adapt the stability region to a given set of end-to-end flows. In the algorithms, the flows control distributively the nodes' TRs using the stability region in order to enable higher end-to-end packet rates while guaranteeing stability. In order to demonstrate how the algorithms can be designed using the proposed game-theoretical framework, a new TR-control algorithm for IEEE-802.16 WMNs is developed. Its convergence is demonstrated, and a performance bound is calculated. Finally, simulation results show that the algorithm is able to find the optimal TRs more effectively. The TRs achieve throughput levels that are at least 90 percent of the optimal throughput for 72 percent of the simulated scenarios, whereas the classic approach of spatial-reuse maximization does this for 62 percent of the scenarios.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Convergence</subject><subject>Games</subject><subject>Mathematical analysis</subject><subject>Maximization</subject><subject>Networks</subject><subject>Optimization</subject><subject>potential games</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>stability region</subject><subject>Throughput</subject><subject>transmission power</subject><subject>Transmission-range control</subject><subject>Vectors</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0D1PwzAQBmALgUQpjEwsllhYUmzHseMRlU-pfIi2Yoxc59K6pEmxHUH59bgqYmC5u-HR6e5F6JSSAaVEXU5erscDRmgaC9tDPZplecJonu7HmfAsUYyqQ3Tk_ZIQyjPCe2h8bX1wdtYFKPFk4dpuvlh3AT_qL7uy3zrYtsG2wW_WQQ3e4ycIn61793jqbTPHYQF4HPTM1jZs8CvMoz9GB5WuPZz89j6a3t5MhvfJ6PnuYXg1SgyTPCSpEJUkFdMyFSURwAwTxGjDZ8zoUmmiiDQiA56bzJTMlJlisjKirEQuU0XTPrrY7V279qMDH4qV9QbqWjfQdr6I_ysZX-Y80vN_dNl2ronXRcUFoZILEVWyU8a13juoirWzK-02BSXFNuJiG3GxjTgWFv3ZzlsA-LMik0pQnv4AEwN3lg</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Vejarano, Gustavo</creator><creator>Dexiang Wang</creator><creator>Dubey, Ritwik</creator><creator>McNair, Janise</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140701</creationdate><title>Distributed Throughput Maximization in Wireless Networks Using the Stability Region</title><author>Vejarano, Gustavo ; Dexiang Wang ; Dubey, Ritwik ; McNair, Janise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-366f70f2a736d06e2c260cac4b2cad9a0907c65e48c5cd2cd5927fc6df6873913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Convergence</topic><topic>Games</topic><topic>Mathematical analysis</topic><topic>Maximization</topic><topic>Networks</topic><topic>Optimization</topic><topic>potential games</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>stability region</topic><topic>Throughput</topic><topic>transmission power</topic><topic>Transmission-range control</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vejarano, Gustavo</creatorcontrib><creatorcontrib>Dexiang Wang</creatorcontrib><creatorcontrib>Dubey, Ritwik</creatorcontrib><creatorcontrib>McNair, Janise</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vejarano, Gustavo</au><au>Dexiang Wang</au><au>Dubey, Ritwik</au><au>McNair, Janise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Throughput Maximization in Wireless Networks Using the Stability Region</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>25</volume><issue>7</issue><spage>1713</spage><epage>1723</epage><pages>1713-1723</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>In this paper, a game-theoretical framework for the design of distributed algorithms that control the transmission range (TR) of nodes in order to maximize throughput in Wireless Multihop Networks (WMN) is proposed. It is based on the stability region of the link-scheduling policy adopted for the network. The stability region is defined as the set of input-packet rates under which the queues in the network are stable (i.e., positive recurrent). The goal of the TR-control algorithms is to adapt the stability region to a given set of end-to-end flows. In the algorithms, the flows control distributively the nodes' TRs using the stability region in order to enable higher end-to-end packet rates while guaranteeing stability. In order to demonstrate how the algorithms can be designed using the proposed game-theoretical framework, a new TR-control algorithm for IEEE-802.16 WMNs is developed. Its convergence is demonstrated, and a performance bound is calculated. Finally, simulation results show that the algorithm is able to find the optimal TRs more effectively. The TRs achieve throughput levels that are at least 90 percent of the optimal throughput for 72 percent of the simulated scenarios, whereas the classic approach of spatial-reuse maximization does this for 62 percent of the scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2013.202</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2014-07, Vol.25 (7), p.1713-1723
issn 1045-9219
1558-2183
language eng
recordid cdi_ieee_primary_6579614
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer simulation
Control algorithms
Convergence
Games
Mathematical analysis
Maximization
Networks
Optimization
potential games
Schedules
Scheduling
Stability
Stability criteria
stability region
Throughput
transmission power
Transmission-range control
Vectors
title Distributed Throughput Maximization in Wireless Networks Using the Stability Region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Throughput%20Maximization%20in%20Wireless%20Networks%20Using%20the%20Stability%20Region&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Vejarano,%20Gustavo&rft.date=2014-07-01&rft.volume=25&rft.issue=7&rft.spage=1713&rft.epage=1723&rft.pages=1713-1723&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2013.202&rft_dat=%3Cproquest_RIE%3E1559721944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546017466&rft_id=info:pmid/&rft_ieee_id=6579614&rfr_iscdi=true