Strategies for genetic adaptive control

In this paper, we investigate ways to use genetic algorithms in the online control of a nonlinear system and compare our results with conventional control techniques. We develop a direct genetic adaptive controller, an indirect genetic adaptive controller, and combine the two into a general genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lennon, W.K., Passino, K.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1913 vol.2
container_issue
container_start_page 1908
container_title
container_volume 2
creator Lennon, W.K.
Passino, K.M.
description In this paper, we investigate ways to use genetic algorithms in the online control of a nonlinear system and compare our results with conventional control techniques. We develop a direct genetic adaptive controller, an indirect genetic adaptive controller, and combine the two into a general genetic adaptive controller. We also examine several conventional controllers including a proportional-derivative (PD) controller, a model reference adaptive controller, and two indirect adaptive controllers. To demonstrate all these control techniques, we investigate the problem of cargo ship steering. In this application, we describe the desired performance with a reference model and use our control techniques to track the output of the reference model. Overall, our goal is not to design the best possible controller for ship steering; we simply use this example to illustrate the ideas.
doi_str_mv 10.1109/CDC.1997.657869
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_657869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>657869</ieee_id><sourcerecordid>657869</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-5171bb0235a15dc6bd7bd9b9c00bc68ba50db50af711f9fb469010b95bc426333</originalsourceid><addsrcrecordid>eNotz79LAzEUwPGACrbVWXC6zenO95JLcm-U06pQcFDnkpcfJVJ7JRcE_3uHOn23D3yFuEHoEIHux8exQyLbGW0HQ2diCXYA1eNg5blYABK2UqK5FMt5_gKAAYxZiLv3WlyNuxznJk2l2cVDrNk3LrhjzT-x8dOhlml_JS6S28_x-r8r8bl--hhf2s3b8-v4sGkzWllbjRaZQSrtUAdvOFgOxOQB2JuBnYbAGlyyiIkS94YAgUmz76VRSq3E7cnNMcbtseRvV363pyf1B7DyPyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Strategies for genetic adaptive control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lennon, W.K. ; Passino, K.M.</creator><creatorcontrib>Lennon, W.K. ; Passino, K.M.</creatorcontrib><description>In this paper, we investigate ways to use genetic algorithms in the online control of a nonlinear system and compare our results with conventional control techniques. We develop a direct genetic adaptive controller, an indirect genetic adaptive controller, and combine the two into a general genetic adaptive controller. We also examine several conventional controllers including a proportional-derivative (PD) controller, a model reference adaptive controller, and two indirect adaptive controllers. To demonstrate all these control techniques, we investigate the problem of cargo ship steering. In this application, we describe the desired performance with a reference model and use our control techniques to track the output of the reference model. Overall, our goal is not to design the best possible controller for ship steering; we simply use this example to illustrate the ideas.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780341872</identifier><identifier>ISBN: 9780780341876</identifier><identifier>DOI: 10.1109/CDC.1997.657869</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Algorithm design and analysis ; Control systems ; Genetic algorithms ; Integrated circuit modeling ; Marine vehicles ; Optimal control ; PD control ; Programmable control ; Proportional control</subject><ispartof>Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.2, p.1908-1913 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/657869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/657869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lennon, W.K.</creatorcontrib><creatorcontrib>Passino, K.M.</creatorcontrib><title>Strategies for genetic adaptive control</title><title>Proceedings of the 36th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>In this paper, we investigate ways to use genetic algorithms in the online control of a nonlinear system and compare our results with conventional control techniques. We develop a direct genetic adaptive controller, an indirect genetic adaptive controller, and combine the two into a general genetic adaptive controller. We also examine several conventional controllers including a proportional-derivative (PD) controller, a model reference adaptive controller, and two indirect adaptive controllers. To demonstrate all these control techniques, we investigate the problem of cargo ship steering. In this application, we describe the desired performance with a reference model and use our control techniques to track the output of the reference model. Overall, our goal is not to design the best possible controller for ship steering; we simply use this example to illustrate the ideas.</description><subject>Adaptive control</subject><subject>Algorithm design and analysis</subject><subject>Control systems</subject><subject>Genetic algorithms</subject><subject>Integrated circuit modeling</subject><subject>Marine vehicles</subject><subject>Optimal control</subject><subject>PD control</subject><subject>Programmable control</subject><subject>Proportional control</subject><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotz79LAzEUwPGACrbVWXC6zenO95JLcm-U06pQcFDnkpcfJVJ7JRcE_3uHOn23D3yFuEHoEIHux8exQyLbGW0HQ2diCXYA1eNg5blYABK2UqK5FMt5_gKAAYxZiLv3WlyNuxznJk2l2cVDrNk3LrhjzT-x8dOhlml_JS6S28_x-r8r8bl--hhf2s3b8-v4sGkzWllbjRaZQSrtUAdvOFgOxOQB2JuBnYbAGlyyiIkS94YAgUmz76VRSq3E7cnNMcbtseRvV363pyf1B7DyPyg</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Lennon, W.K.</creator><creator>Passino, K.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Strategies for genetic adaptive control</title><author>Lennon, W.K. ; Passino, K.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-5171bb0235a15dc6bd7bd9b9c00bc68ba50db50af711f9fb469010b95bc426333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adaptive control</topic><topic>Algorithm design and analysis</topic><topic>Control systems</topic><topic>Genetic algorithms</topic><topic>Integrated circuit modeling</topic><topic>Marine vehicles</topic><topic>Optimal control</topic><topic>PD control</topic><topic>Programmable control</topic><topic>Proportional control</topic><toplevel>online_resources</toplevel><creatorcontrib>Lennon, W.K.</creatorcontrib><creatorcontrib>Passino, K.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lennon, W.K.</au><au>Passino, K.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Strategies for genetic adaptive control</atitle><btitle>Proceedings of the 36th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1997</date><risdate>1997</risdate><volume>2</volume><spage>1908</spage><epage>1913 vol.2</epage><pages>1908-1913 vol.2</pages><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><abstract>In this paper, we investigate ways to use genetic algorithms in the online control of a nonlinear system and compare our results with conventional control techniques. We develop a direct genetic adaptive controller, an indirect genetic adaptive controller, and combine the two into a general genetic adaptive controller. We also examine several conventional controllers including a proportional-derivative (PD) controller, a model reference adaptive controller, and two indirect adaptive controllers. To demonstrate all these control techniques, we investigate the problem of cargo ship steering. In this application, we describe the desired performance with a reference model and use our control techniques to track the output of the reference model. Overall, our goal is not to design the best possible controller for ship steering; we simply use this example to illustrate the ideas.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1997.657869</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.2, p.1908-1913 vol.2
issn 0191-2216
language eng
recordid cdi_ieee_primary_657869
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Algorithm design and analysis
Control systems
Genetic algorithms
Integrated circuit modeling
Marine vehicles
Optimal control
PD control
Programmable control
Proportional control
title Strategies for genetic adaptive control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Strategies%20for%20genetic%20adaptive%20control&rft.btitle=Proceedings%20of%20the%2036th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Lennon,%20W.K.&rft.date=1997&rft.volume=2&rft.spage=1908&rft.epage=1913%20vol.2&rft.pages=1908-1913%20vol.2&rft.issn=0191-2216&rft.isbn=0780341872&rft.isbn_list=9780780341876&rft_id=info:doi/10.1109/CDC.1997.657869&rft_dat=%3Cieee_6IE%3E657869%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=657869&rfr_iscdi=true