A 2.3-mW, 5-Gb/s Low-Power Decision-Feedback Equalizer Receiver Front-End and its Two-Step, Minimum Bit-Error-Rate Adaptation Algorithm

This paper presents a low-power decision-feedback equalizer (DFE) receiver front-end and a two-step minimum bit-error-rate (BER) adaptation algorithm. A high energy efficiency of 0.46 mW/Gbps is made possible by the combination of a direct-feedback finite-impulse-response (FIR) DFE, an infinite-impu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2013-11, Vol.48 (11), p.2693-2704
Hauptverfasser: Seuk Son, Han-Seok Kim, Myeong-Jae Park, Kyunghoon Kim, E-Hung Chen, Leibowitz, Brian, Jaeha Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2704
container_issue 11
container_start_page 2693
container_title IEEE journal of solid-state circuits
container_volume 48
creator Seuk Son
Han-Seok Kim
Myeong-Jae Park
Kyunghoon Kim
E-Hung Chen
Leibowitz, Brian
Jaeha Kim
description This paper presents a low-power decision-feedback equalizer (DFE) receiver front-end and a two-step minimum bit-error-rate (BER) adaptation algorithm. A high energy efficiency of 0.46 mW/Gbps is made possible by the combination of a direct-feedback finite-impulse-response (FIR) DFE, an infinite-impulse-response (IIR) DFE, and a clock-and-data recovery (CDR) circuit with adjustable timing offsets. Based on this architecture, the power-hungry stages used in prior DFE receivers such as the continuous-time linear equalizer (CTLE), the current-mode summing circuit for a multitap DFE, and the fast selection logic for a loop-unrolling DFE can all be removed. A two-step adaptation algorithm that finds the equalizer coefficients minimizing the BER is described. First, an extra data sampler with adjustable voltage and timing offsets measures the single-bit response (SBR) of the channel and coarsely tunes the initial coefficient values in the foreground. Next, the same circuit measures the eye-opening and bit-error rates and fine tunes the coefficients in background using a stochastic hill-climbing algorithm. A prototype DFE receiver fabricated in a 65-nm LP/RF CMOS dissipates 2.3 mW and demonstrates measured eye-opening values of 174 mV pp and 0.66 UIpp while operating at 5 Gb/s with a -15-dB loss channel.
doi_str_mv 10.1109/JSSC.2013.2274904
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6578598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6578598</ieee_id><sourcerecordid>27894407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-515141aecd1717851bfa59581abb1fe504652e6e2a0744360130e7ea3f640c3f3</originalsourceid><addsrcrecordid>eNo9kM9OAjEQxhujiYg-gPHSizcKnW67f46IgBqMBjB623SXWa2yu9guEn0BX9sSiIfJzGS-78vkR8g58C4AT3p3s9mgKzgEXSEimXB5QFqgVMwgCl4OSYtziFkiOD8mJ869-1XKGFrkt09FN2Dlc4cqNs56jk7qDXusN2jpNebGmbpiI8RFpvMPOvxc66X58bcp5mi-_DCyddWwYbWg2pdpHJ1vajZrcNWh96Yy5bqkV8YrrK0tm-oGaX-hV41ufDLtL19ra5q38pQcFXrp8Gzf2-RpNJwPbtjkYXw76E9YLhLVMAUKJGjMFxBBFCvICq0SFYPOMihQcRkqgSEKzSMpg9AD4RihDopQ8jwogjaBXW5ua-csFunKmlLb7xR4uiWZbkmmW5LpnqT3XO48K-1yvSysrjyYf6OI4kRKHnndxU5nEPH_HCr_ZxIHf4bpevc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 2.3-mW, 5-Gb/s Low-Power Decision-Feedback Equalizer Receiver Front-End and its Two-Step, Minimum Bit-Error-Rate Adaptation Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Seuk Son ; Han-Seok Kim ; Myeong-Jae Park ; Kyunghoon Kim ; E-Hung Chen ; Leibowitz, Brian ; Jaeha Kim</creator><creatorcontrib>Seuk Son ; Han-Seok Kim ; Myeong-Jae Park ; Kyunghoon Kim ; E-Hung Chen ; Leibowitz, Brian ; Jaeha Kim</creatorcontrib><description>This paper presents a low-power decision-feedback equalizer (DFE) receiver front-end and a two-step minimum bit-error-rate (BER) adaptation algorithm. A high energy efficiency of 0.46 mW/Gbps is made possible by the combination of a direct-feedback finite-impulse-response (FIR) DFE, an infinite-impulse-response (IIR) DFE, and a clock-and-data recovery (CDR) circuit with adjustable timing offsets. Based on this architecture, the power-hungry stages used in prior DFE receivers such as the continuous-time linear equalizer (CTLE), the current-mode summing circuit for a multitap DFE, and the fast selection logic for a loop-unrolling DFE can all be removed. A two-step adaptation algorithm that finds the equalizer coefficients minimizing the BER is described. First, an extra data sampler with adjustable voltage and timing offsets measures the single-bit response (SBR) of the channel and coarsely tunes the initial coefficient values in the foreground. Next, the same circuit measures the eye-opening and bit-error rates and fine tunes the coefficients in background using a stochastic hill-climbing algorithm. A prototype DFE receiver fabricated in a 65-nm LP/RF CMOS dissipates 2.3 mW and demonstrates measured eye-opening values of 174 mV pp and 0.66 UIpp while operating at 5 Gb/s with a -15-dB loss channel.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2013.2274904</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bit error rate ; Circuit properties ; Clocks ; Decision feedback equalizers ; Decision-feedback equalizer (DFE) ; direct-feedback equalizer finite-impulse-response (FIR) DFE ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Finite impulse response filters ; Frequency filters ; Hardware ; infinite-impulse-response (IIR) DFE ; Input-output equipment ; Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits ; Receivers ; stochastic hill-climbing algorithm ; Timing</subject><ispartof>IEEE journal of solid-state circuits, 2013-11, Vol.48 (11), p.2693-2704</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-515141aecd1717851bfa59581abb1fe504652e6e2a0744360130e7ea3f640c3f3</citedby><cites>FETCH-LOGICAL-c295t-515141aecd1717851bfa59581abb1fe504652e6e2a0744360130e7ea3f640c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6578598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6578598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27894407$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seuk Son</creatorcontrib><creatorcontrib>Han-Seok Kim</creatorcontrib><creatorcontrib>Myeong-Jae Park</creatorcontrib><creatorcontrib>Kyunghoon Kim</creatorcontrib><creatorcontrib>E-Hung Chen</creatorcontrib><creatorcontrib>Leibowitz, Brian</creatorcontrib><creatorcontrib>Jaeha Kim</creatorcontrib><title>A 2.3-mW, 5-Gb/s Low-Power Decision-Feedback Equalizer Receiver Front-End and its Two-Step, Minimum Bit-Error-Rate Adaptation Algorithm</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper presents a low-power decision-feedback equalizer (DFE) receiver front-end and a two-step minimum bit-error-rate (BER) adaptation algorithm. A high energy efficiency of 0.46 mW/Gbps is made possible by the combination of a direct-feedback finite-impulse-response (FIR) DFE, an infinite-impulse-response (IIR) DFE, and a clock-and-data recovery (CDR) circuit with adjustable timing offsets. Based on this architecture, the power-hungry stages used in prior DFE receivers such as the continuous-time linear equalizer (CTLE), the current-mode summing circuit for a multitap DFE, and the fast selection logic for a loop-unrolling DFE can all be removed. A two-step adaptation algorithm that finds the equalizer coefficients minimizing the BER is described. First, an extra data sampler with adjustable voltage and timing offsets measures the single-bit response (SBR) of the channel and coarsely tunes the initial coefficient values in the foreground. Next, the same circuit measures the eye-opening and bit-error rates and fine tunes the coefficients in background using a stochastic hill-climbing algorithm. A prototype DFE receiver fabricated in a 65-nm LP/RF CMOS dissipates 2.3 mW and demonstrates measured eye-opening values of 174 mV pp and 0.66 UIpp while operating at 5 Gb/s with a -15-dB loss channel.</description><subject>Applied sciences</subject><subject>Bit error rate</subject><subject>Circuit properties</subject><subject>Clocks</subject><subject>Decision feedback equalizers</subject><subject>Decision-feedback equalizer (DFE)</subject><subject>direct-feedback equalizer finite-impulse-response (FIR) DFE</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite impulse response filters</subject><subject>Frequency filters</subject><subject>Hardware</subject><subject>infinite-impulse-response (IIR) DFE</subject><subject>Input-output equipment</subject><subject>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</subject><subject>Receivers</subject><subject>stochastic hill-climbing algorithm</subject><subject>Timing</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9OAjEQxhujiYg-gPHSizcKnW67f46IgBqMBjB623SXWa2yu9guEn0BX9sSiIfJzGS-78vkR8g58C4AT3p3s9mgKzgEXSEimXB5QFqgVMwgCl4OSYtziFkiOD8mJ869-1XKGFrkt09FN2Dlc4cqNs56jk7qDXusN2jpNebGmbpiI8RFpvMPOvxc66X58bcp5mi-_DCyddWwYbWg2pdpHJ1vajZrcNWh96Yy5bqkV8YrrK0tm-oGaX-hV41ufDLtL19ra5q38pQcFXrp8Gzf2-RpNJwPbtjkYXw76E9YLhLVMAUKJGjMFxBBFCvICq0SFYPOMihQcRkqgSEKzSMpg9AD4RihDopQ8jwogjaBXW5ua-csFunKmlLb7xR4uiWZbkmmW5LpnqT3XO48K-1yvSysrjyYf6OI4kRKHnndxU5nEPH_HCr_ZxIHf4bpevc</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Seuk Son</creator><creator>Han-Seok Kim</creator><creator>Myeong-Jae Park</creator><creator>Kyunghoon Kim</creator><creator>E-Hung Chen</creator><creator>Leibowitz, Brian</creator><creator>Jaeha Kim</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131101</creationdate><title>A 2.3-mW, 5-Gb/s Low-Power Decision-Feedback Equalizer Receiver Front-End and its Two-Step, Minimum Bit-Error-Rate Adaptation Algorithm</title><author>Seuk Son ; Han-Seok Kim ; Myeong-Jae Park ; Kyunghoon Kim ; E-Hung Chen ; Leibowitz, Brian ; Jaeha Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-515141aecd1717851bfa59581abb1fe504652e6e2a0744360130e7ea3f640c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Bit error rate</topic><topic>Circuit properties</topic><topic>Clocks</topic><topic>Decision feedback equalizers</topic><topic>Decision-feedback equalizer (DFE)</topic><topic>direct-feedback equalizer finite-impulse-response (FIR) DFE</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite impulse response filters</topic><topic>Frequency filters</topic><topic>Hardware</topic><topic>infinite-impulse-response (IIR) DFE</topic><topic>Input-output equipment</topic><topic>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</topic><topic>Receivers</topic><topic>stochastic hill-climbing algorithm</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seuk Son</creatorcontrib><creatorcontrib>Han-Seok Kim</creatorcontrib><creatorcontrib>Myeong-Jae Park</creatorcontrib><creatorcontrib>Kyunghoon Kim</creatorcontrib><creatorcontrib>E-Hung Chen</creatorcontrib><creatorcontrib>Leibowitz, Brian</creatorcontrib><creatorcontrib>Jaeha Kim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seuk Son</au><au>Han-Seok Kim</au><au>Myeong-Jae Park</au><au>Kyunghoon Kim</au><au>E-Hung Chen</au><au>Leibowitz, Brian</au><au>Jaeha Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 2.3-mW, 5-Gb/s Low-Power Decision-Feedback Equalizer Receiver Front-End and its Two-Step, Minimum Bit-Error-Rate Adaptation Algorithm</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>48</volume><issue>11</issue><spage>2693</spage><epage>2704</epage><pages>2693-2704</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper presents a low-power decision-feedback equalizer (DFE) receiver front-end and a two-step minimum bit-error-rate (BER) adaptation algorithm. A high energy efficiency of 0.46 mW/Gbps is made possible by the combination of a direct-feedback finite-impulse-response (FIR) DFE, an infinite-impulse-response (IIR) DFE, and a clock-and-data recovery (CDR) circuit with adjustable timing offsets. Based on this architecture, the power-hungry stages used in prior DFE receivers such as the continuous-time linear equalizer (CTLE), the current-mode summing circuit for a multitap DFE, and the fast selection logic for a loop-unrolling DFE can all be removed. A two-step adaptation algorithm that finds the equalizer coefficients minimizing the BER is described. First, an extra data sampler with adjustable voltage and timing offsets measures the single-bit response (SBR) of the channel and coarsely tunes the initial coefficient values in the foreground. Next, the same circuit measures the eye-opening and bit-error rates and fine tunes the coefficients in background using a stochastic hill-climbing algorithm. A prototype DFE receiver fabricated in a 65-nm LP/RF CMOS dissipates 2.3 mW and demonstrates measured eye-opening values of 174 mV pp and 0.66 UIpp while operating at 5 Gb/s with a -15-dB loss channel.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2013.2274904</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2013-11, Vol.48 (11), p.2693-2704
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_6578598
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bit error rate
Circuit properties
Clocks
Decision feedback equalizers
Decision-feedback equalizer (DFE)
direct-feedback equalizer finite-impulse-response (FIR) DFE
Electric, optical and optoelectronic circuits
Electronic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Finite impulse response filters
Frequency filters
Hardware
infinite-impulse-response (IIR) DFE
Input-output equipment
Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits
Receivers
stochastic hill-climbing algorithm
Timing
title A 2.3-mW, 5-Gb/s Low-Power Decision-Feedback Equalizer Receiver Front-End and its Two-Step, Minimum Bit-Error-Rate Adaptation Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%202.3-mW,%205-Gb/s%20Low-Power%20Decision-Feedback%20Equalizer%20Receiver%20Front-End%20and%20its%20Two-Step,%20Minimum%20Bit-Error-Rate%20Adaptation%20Algorithm&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Seuk%20Son&rft.date=2013-11-01&rft.volume=48&rft.issue=11&rft.spage=2693&rft.epage=2704&rft.pages=2693-2704&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2013.2274904&rft_dat=%3Cpascalfrancis_RIE%3E27894407%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6578598&rfr_iscdi=true