A finite dimensional filter with exponential conditional density

In this paper we consider the continuous-time nonlinear filtering problem, which has an infinite-dimensional solution in general, as proved by Chaleyat-Maurel and Michel (1984). There are few examples of nonlinear systems for which the optimal filter is finite dimensional, in particular the Kalman,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brigo, D., LeGland, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1644 vol.2
container_issue
container_start_page 1643
container_title
container_volume 2
creator Brigo, D.
LeGland, F.
description In this paper we consider the continuous-time nonlinear filtering problem, which has an infinite-dimensional solution in general, as proved by Chaleyat-Maurel and Michel (1984). There are few examples of nonlinear systems for which the optimal filter is finite dimensional, in particular the Kalman, Benes, and Daum filters. In the present paper, we construct new classes of scalar nonlinear systems admitting finite-dimensional filters. We consider a given (nonlinear) diffusion coefficient for the state equation, a given (nonlinear) observation function, and a given finite-dimensional exponential family of probability densities. We construct a drift for the state equation such that the resulting nonlinear system admits a finite-dimensional filter evolving in the prescribed exponential family, provided the coefficients of the exponential family include the observation function and its square.
doi_str_mv 10.1109/CDC.1997.657749
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_657749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>657749</ieee_id><sourcerecordid>657749</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-489388defdcfd486d3447860f8dfa70499f0b9d17ff8b0ef4bc6f4d22bc10be43</originalsourceid><addsrcrecordid>eNotj81Kw0AURgdUsK2uBVd5gcR7Z8b52VmiVaHgRtclydyLI-mkJAPat7cSVx8cDgc-IW4QKkTwd_VjXaH3tjL31mp_JpZgHSiNzspzsQD0WEqJ5lIsp-kLABwYsxAP64JjipmKEPeUpjikpj-hPtNYfMf8WdDPYUiUcjzxbkgh5tkJf3Y-XokLbvqJrv93JT42T-_1S7l9e36t19sySlS51M4r5wJx6DhoZ4LS2joD7AI3FrT3DK0PaJldC8S67QzrIGXbIbSk1Urczt1IRLvDGPfNeNzNZ9Uv7gZJqQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A finite dimensional filter with exponential conditional density</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Brigo, D. ; LeGland, F.</creator><creatorcontrib>Brigo, D. ; LeGland, F.</creatorcontrib><description>In this paper we consider the continuous-time nonlinear filtering problem, which has an infinite-dimensional solution in general, as proved by Chaleyat-Maurel and Michel (1984). There are few examples of nonlinear systems for which the optimal filter is finite dimensional, in particular the Kalman, Benes, and Daum filters. In the present paper, we construct new classes of scalar nonlinear systems admitting finite-dimensional filters. We consider a given (nonlinear) diffusion coefficient for the state equation, a given (nonlinear) observation function, and a given finite-dimensional exponential family of probability densities. We construct a drift for the state equation such that the resulting nonlinear system admits a finite-dimensional filter evolving in the prescribed exponential family, provided the coefficients of the exponential family include the observation function and its square.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780341872</identifier><identifier>ISBN: 9780780341876</identifier><identifier>DOI: 10.1109/CDC.1997.657749</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communities ; Ear ; Electronic mail ; Filtering ; Kalman filters ; Linear systems ; Nonlinear equations ; Nonlinear filters ; Nonlinear systems ; Risk management</subject><ispartof>Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.2, p.1643-1644 vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/657749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/657749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brigo, D.</creatorcontrib><creatorcontrib>LeGland, F.</creatorcontrib><title>A finite dimensional filter with exponential conditional density</title><title>Proceedings of the 36th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>In this paper we consider the continuous-time nonlinear filtering problem, which has an infinite-dimensional solution in general, as proved by Chaleyat-Maurel and Michel (1984). There are few examples of nonlinear systems for which the optimal filter is finite dimensional, in particular the Kalman, Benes, and Daum filters. In the present paper, we construct new classes of scalar nonlinear systems admitting finite-dimensional filters. We consider a given (nonlinear) diffusion coefficient for the state equation, a given (nonlinear) observation function, and a given finite-dimensional exponential family of probability densities. We construct a drift for the state equation such that the resulting nonlinear system admits a finite-dimensional filter evolving in the prescribed exponential family, provided the coefficients of the exponential family include the observation function and its square.</description><subject>Communities</subject><subject>Ear</subject><subject>Electronic mail</subject><subject>Filtering</subject><subject>Kalman filters</subject><subject>Linear systems</subject><subject>Nonlinear equations</subject><subject>Nonlinear filters</subject><subject>Nonlinear systems</subject><subject>Risk management</subject><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AURgdUsK2uBVd5gcR7Z8b52VmiVaHgRtclydyLI-mkJAPat7cSVx8cDgc-IW4QKkTwd_VjXaH3tjL31mp_JpZgHSiNzspzsQD0WEqJ5lIsp-kLABwYsxAP64JjipmKEPeUpjikpj-hPtNYfMf8WdDPYUiUcjzxbkgh5tkJf3Y-XokLbvqJrv93JT42T-_1S7l9e36t19sySlS51M4r5wJx6DhoZ4LS2joD7AI3FrT3DK0PaJldC8S67QzrIGXbIbSk1Urczt1IRLvDGPfNeNzNZ9Uv7gZJqQ</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Brigo, D.</creator><creator>LeGland, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>A finite dimensional filter with exponential conditional density</title><author>Brigo, D. ; LeGland, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-489388defdcfd486d3447860f8dfa70499f0b9d17ff8b0ef4bc6f4d22bc10be43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Communities</topic><topic>Ear</topic><topic>Electronic mail</topic><topic>Filtering</topic><topic>Kalman filters</topic><topic>Linear systems</topic><topic>Nonlinear equations</topic><topic>Nonlinear filters</topic><topic>Nonlinear systems</topic><topic>Risk management</topic><toplevel>online_resources</toplevel><creatorcontrib>Brigo, D.</creatorcontrib><creatorcontrib>LeGland, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brigo, D.</au><au>LeGland, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A finite dimensional filter with exponential conditional density</atitle><btitle>Proceedings of the 36th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1997</date><risdate>1997</risdate><volume>2</volume><spage>1643</spage><epage>1644 vol.2</epage><pages>1643-1644 vol.2</pages><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><abstract>In this paper we consider the continuous-time nonlinear filtering problem, which has an infinite-dimensional solution in general, as proved by Chaleyat-Maurel and Michel (1984). There are few examples of nonlinear systems for which the optimal filter is finite dimensional, in particular the Kalman, Benes, and Daum filters. In the present paper, we construct new classes of scalar nonlinear systems admitting finite-dimensional filters. We consider a given (nonlinear) diffusion coefficient for the state equation, a given (nonlinear) observation function, and a given finite-dimensional exponential family of probability densities. We construct a drift for the state equation such that the resulting nonlinear system admits a finite-dimensional filter evolving in the prescribed exponential family, provided the coefficients of the exponential family include the observation function and its square.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1997.657749</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.2, p.1643-1644 vol.2
issn 0191-2216
language eng
recordid cdi_ieee_primary_657749
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Communities
Ear
Electronic mail
Filtering
Kalman filters
Linear systems
Nonlinear equations
Nonlinear filters
Nonlinear systems
Risk management
title A finite dimensional filter with exponential conditional density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20finite%20dimensional%20filter%20with%20exponential%20conditional%20density&rft.btitle=Proceedings%20of%20the%2036th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Brigo,%20D.&rft.date=1997&rft.volume=2&rft.spage=1643&rft.epage=1644%20vol.2&rft.pages=1643-1644%20vol.2&rft.issn=0191-2216&rft.isbn=0780341872&rft.isbn_list=9780780341876&rft_id=info:doi/10.1109/CDC.1997.657749&rft_dat=%3Cieee_6IE%3E657749%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=657749&rfr_iscdi=true