Source Separation of Convolutive and Noisy Mixtures Using Audio-Visual Dictionary Learning and Probabilistic Time-Frequency Masking
In existing audio-visual blind source separation (AV-BSS) algorithms, the AV coherence is usually established through statistical modelling, using e.g., Gaussian mixture models (GMMs). These methods often operate in a low-dimensional feature space, rendering an effective global representation of the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2013-11, Vol.61 (22), p.5520-5535 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5535 |
---|---|
container_issue | 22 |
container_start_page | 5520 |
container_title | IEEE transactions on signal processing |
container_volume | 61 |
creator | Qingju Liu Wenwu Wang Jackson, Philip J. B. Barnard, Mark Kittler, Josef Chambers, Jonathon |
description | In existing audio-visual blind source separation (AV-BSS) algorithms, the AV coherence is usually established through statistical modelling, using e.g., Gaussian mixture models (GMMs). These methods often operate in a low-dimensional feature space, rendering an effective global representation of the data. The local information, which is important in capturing the temporal structure of the data, however, has not been explicitly exploited. In this paper, we propose a new method for capturing such local information, based on audio-visual dictionary learning (AVDL). We address several challenges associated with AVDL, including cross-modality differences in size, dimension and sampling rate, as well as the issues of scalability and computational complexity. Following a commonly employed bootstrap coding-learning process, we have developed a new AVDL algorithm which features, a bimodality balanced and scalable matching criterion, a size and dimension adaptive dictionary, a fast search index for efficient coding, and cross-modality diverse sparsity. We also show how the proposed AVDL can be incorporated into a BSS algorithm. As an example, we consider binaural mixtures, mimicking aspects of human binaural hearing, and derive a new noise-robust AV-BSS algorithm by combining the proposed AVDL algorithm with Mandel's BSS method, which is a state-of-the-art audio-domain method using time-frequency masking. We have systematically evaluated the proposed AVDL and AV-BSS algorithms, and show their advantages over the corresponding baseline methods, using both synthetic data and visual speech data from the multimodal LILiR Twotalk corpus. |
doi_str_mv | 10.1109/TSP.2013.2277834 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6576817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6576817</ieee_id><sourcerecordid>28150137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-5ebb65a947605d3994db67e1d6f4c1ffadb27dc39da005f5445169774941711b3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYQIsoOKd3wUsuHjuTJmma45hOhamDbeKtpPkh0a6ZSTvc2X_clI2dEsh7H_leklwjOEII8rvlYj7KIMKjLGOswOQkGSBOUAoJy0_jHVKc0oJ9nCcXIXxBiAjh-SD5W7jOSw0WeiO8aK1rgDNg4pqtq7vWbjUQjQKvzoYdeLG_bed1AKtgm08w7pR16bsNnajBvZW9LPwOzLTwTQ_05ty7SlS2tqG1EiztWqdTr3863cg4UITvCF4mZ0bUQV8dzmGymj4sJ0_p7O3xeTKepRJj2qZUV1VOBY8LQaow50RVOdNI5YZIZIxQVcaUxFwJCKmhhFCUc8ZIzMAQqvAwgfu50rsQvDblxtt1_HKJYNlHLGPEso9YHiJG5XavbESQojZeNNKGo5cViEacRe5mz1mt9fE5pywvEMP_pB99Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Source Separation of Convolutive and Noisy Mixtures Using Audio-Visual Dictionary Learning and Probabilistic Time-Frequency Masking</title><source>IEEE Electronic Library (IEL)</source><creator>Qingju Liu ; Wenwu Wang ; Jackson, Philip J. B. ; Barnard, Mark ; Kittler, Josef ; Chambers, Jonathon</creator><creatorcontrib>Qingju Liu ; Wenwu Wang ; Jackson, Philip J. B. ; Barnard, Mark ; Kittler, Josef ; Chambers, Jonathon</creatorcontrib><description>In existing audio-visual blind source separation (AV-BSS) algorithms, the AV coherence is usually established through statistical modelling, using e.g., Gaussian mixture models (GMMs). These methods often operate in a low-dimensional feature space, rendering an effective global representation of the data. The local information, which is important in capturing the temporal structure of the data, however, has not been explicitly exploited. In this paper, we propose a new method for capturing such local information, based on audio-visual dictionary learning (AVDL). We address several challenges associated with AVDL, including cross-modality differences in size, dimension and sampling rate, as well as the issues of scalability and computational complexity. Following a commonly employed bootstrap coding-learning process, we have developed a new AVDL algorithm which features, a bimodality balanced and scalable matching criterion, a size and dimension adaptive dictionary, a fast search index for efficient coding, and cross-modality diverse sparsity. We also show how the proposed AVDL can be incorporated into a BSS algorithm. As an example, we consider binaural mixtures, mimicking aspects of human binaural hearing, and derive a new noise-robust AV-BSS algorithm by combining the proposed AVDL algorithm with Mandel's BSS method, which is a state-of-the-art audio-domain method using time-frequency masking. We have systematically evaluated the proposed AVDL and AV-BSS algorithms, and show their advantages over the corresponding baseline methods, using both synthetic data and visual speech data from the multimodal LILiR Twotalk corpus.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2277834</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Audio-visual coherence ; blind source separation ; Coding, codes ; Coherence ; convolutive mixtures ; Detection, estimation, filtering, equalization, prediction ; Dictionaries ; dictionary learning ; Encoding ; Exact sciences and technology ; Information, signal and communications theory ; Matching pursuit algorithms ; noisy mixtures ; Signal and communications theory ; Signal, noise ; Source separation ; Telecommunications and information theory ; Training ; Visualization</subject><ispartof>IEEE transactions on signal processing, 2013-11, Vol.61 (22), p.5520-5535</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-5ebb65a947605d3994db67e1d6f4c1ffadb27dc39da005f5445169774941711b3</citedby><cites>FETCH-LOGICAL-c335t-5ebb65a947605d3994db67e1d6f4c1ffadb27dc39da005f5445169774941711b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6576817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6576817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28150137$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qingju Liu</creatorcontrib><creatorcontrib>Wenwu Wang</creatorcontrib><creatorcontrib>Jackson, Philip J. B.</creatorcontrib><creatorcontrib>Barnard, Mark</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><creatorcontrib>Chambers, Jonathon</creatorcontrib><title>Source Separation of Convolutive and Noisy Mixtures Using Audio-Visual Dictionary Learning and Probabilistic Time-Frequency Masking</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In existing audio-visual blind source separation (AV-BSS) algorithms, the AV coherence is usually established through statistical modelling, using e.g., Gaussian mixture models (GMMs). These methods often operate in a low-dimensional feature space, rendering an effective global representation of the data. The local information, which is important in capturing the temporal structure of the data, however, has not been explicitly exploited. In this paper, we propose a new method for capturing such local information, based on audio-visual dictionary learning (AVDL). We address several challenges associated with AVDL, including cross-modality differences in size, dimension and sampling rate, as well as the issues of scalability and computational complexity. Following a commonly employed bootstrap coding-learning process, we have developed a new AVDL algorithm which features, a bimodality balanced and scalable matching criterion, a size and dimension adaptive dictionary, a fast search index for efficient coding, and cross-modality diverse sparsity. We also show how the proposed AVDL can be incorporated into a BSS algorithm. As an example, we consider binaural mixtures, mimicking aspects of human binaural hearing, and derive a new noise-robust AV-BSS algorithm by combining the proposed AVDL algorithm with Mandel's BSS method, which is a state-of-the-art audio-domain method using time-frequency masking. We have systematically evaluated the proposed AVDL and AV-BSS algorithms, and show their advantages over the corresponding baseline methods, using both synthetic data and visual speech data from the multimodal LILiR Twotalk corpus.</description><subject>Applied sciences</subject><subject>Audio-visual coherence</subject><subject>blind source separation</subject><subject>Coding, codes</subject><subject>Coherence</subject><subject>convolutive mixtures</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Matching pursuit algorithms</subject><subject>noisy mixtures</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Source separation</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Visualization</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYQIsoOKd3wUsuHjuTJmma45hOhamDbeKtpPkh0a6ZSTvc2X_clI2dEsh7H_leklwjOEII8rvlYj7KIMKjLGOswOQkGSBOUAoJy0_jHVKc0oJ9nCcXIXxBiAjh-SD5W7jOSw0WeiO8aK1rgDNg4pqtq7vWbjUQjQKvzoYdeLG_bed1AKtgm08w7pR16bsNnajBvZW9LPwOzLTwTQ_05ty7SlS2tqG1EiztWqdTr3863cg4UITvCF4mZ0bUQV8dzmGymj4sJ0_p7O3xeTKepRJj2qZUV1VOBY8LQaow50RVOdNI5YZIZIxQVcaUxFwJCKmhhFCUc8ZIzMAQqvAwgfu50rsQvDblxtt1_HKJYNlHLGPEso9YHiJG5XavbESQojZeNNKGo5cViEacRe5mz1mt9fE5pywvEMP_pB99Hg</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Qingju Liu</creator><creator>Wenwu Wang</creator><creator>Jackson, Philip J. B.</creator><creator>Barnard, Mark</creator><creator>Kittler, Josef</creator><creator>Chambers, Jonathon</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131101</creationdate><title>Source Separation of Convolutive and Noisy Mixtures Using Audio-Visual Dictionary Learning and Probabilistic Time-Frequency Masking</title><author>Qingju Liu ; Wenwu Wang ; Jackson, Philip J. B. ; Barnard, Mark ; Kittler, Josef ; Chambers, Jonathon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-5ebb65a947605d3994db67e1d6f4c1ffadb27dc39da005f5445169774941711b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Audio-visual coherence</topic><topic>blind source separation</topic><topic>Coding, codes</topic><topic>Coherence</topic><topic>convolutive mixtures</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Matching pursuit algorithms</topic><topic>noisy mixtures</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Source separation</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qingju Liu</creatorcontrib><creatorcontrib>Wenwu Wang</creatorcontrib><creatorcontrib>Jackson, Philip J. B.</creatorcontrib><creatorcontrib>Barnard, Mark</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><creatorcontrib>Chambers, Jonathon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qingju Liu</au><au>Wenwu Wang</au><au>Jackson, Philip J. B.</au><au>Barnard, Mark</au><au>Kittler, Josef</au><au>Chambers, Jonathon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Source Separation of Convolutive and Noisy Mixtures Using Audio-Visual Dictionary Learning and Probabilistic Time-Frequency Masking</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>61</volume><issue>22</issue><spage>5520</spage><epage>5535</epage><pages>5520-5535</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In existing audio-visual blind source separation (AV-BSS) algorithms, the AV coherence is usually established through statistical modelling, using e.g., Gaussian mixture models (GMMs). These methods often operate in a low-dimensional feature space, rendering an effective global representation of the data. The local information, which is important in capturing the temporal structure of the data, however, has not been explicitly exploited. In this paper, we propose a new method for capturing such local information, based on audio-visual dictionary learning (AVDL). We address several challenges associated with AVDL, including cross-modality differences in size, dimension and sampling rate, as well as the issues of scalability and computational complexity. Following a commonly employed bootstrap coding-learning process, we have developed a new AVDL algorithm which features, a bimodality balanced and scalable matching criterion, a size and dimension adaptive dictionary, a fast search index for efficient coding, and cross-modality diverse sparsity. We also show how the proposed AVDL can be incorporated into a BSS algorithm. As an example, we consider binaural mixtures, mimicking aspects of human binaural hearing, and derive a new noise-robust AV-BSS algorithm by combining the proposed AVDL algorithm with Mandel's BSS method, which is a state-of-the-art audio-domain method using time-frequency masking. We have systematically evaluated the proposed AVDL and AV-BSS algorithms, and show their advantages over the corresponding baseline methods, using both synthetic data and visual speech data from the multimodal LILiR Twotalk corpus.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2277834</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2013-11, Vol.61 (22), p.5520-5535 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_6576817 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Audio-visual coherence blind source separation Coding, codes Coherence convolutive mixtures Detection, estimation, filtering, equalization, prediction Dictionaries dictionary learning Encoding Exact sciences and technology Information, signal and communications theory Matching pursuit algorithms noisy mixtures Signal and communications theory Signal, noise Source separation Telecommunications and information theory Training Visualization |
title | Source Separation of Convolutive and Noisy Mixtures Using Audio-Visual Dictionary Learning and Probabilistic Time-Frequency Masking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Source%20Separation%20of%20Convolutive%20and%20Noisy%20Mixtures%20Using%20Audio-Visual%20Dictionary%20Learning%20and%20Probabilistic%20Time-Frequency%20Masking&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Qingju%20Liu&rft.date=2013-11-01&rft.volume=61&rft.issue=22&rft.spage=5520&rft.epage=5535&rft.pages=5520-5535&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2277834&rft_dat=%3Cpascalfrancis_RIE%3E28150137%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6576817&rfr_iscdi=true |