64nm pitch interconnects: Optimized for designability, manufacturability and extendibility
In this paper, we present a 64nm pitch integration and materials strategy to enable aggressive groundrules and extendibility for multi-node insertions. Exploitation of brightfield entitlements at trench and via lithography enables tight via and bi-directional trench pitch. Setting the same mask meta...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a 64nm pitch integration and materials strategy to enable aggressive groundrules and extendibility for multi-node insertions. Exploitation of brightfield entitlements at trench and via lithography enables tight via and bi-directional trench pitch. Setting the same mask metal spacing equal to CPP maximized density scaling and speed of standard cell automation by avoiding cell abutment conflicts. A Self-Aligned-Via (SAV) approach was exploited for single pattern via extendibility, enabling via placement at CPP with a single mask. Yield ramp rate, groundrule validation, and reliability qualification were each accelerated by early brightfield adoption for trench and via, producing a robust cross-module process window. The resulting groundrules and process module have been "plugged in" to multiple technology nodes without re-development needed (e.g. 20LPM, 14nm FINFET, 14FDSOI, 10nm P&R levels). Scaling, performance, and reliability requirements are achieved across a spectrum of low power-high performance applications. |
---|---|
ISSN: | 0743-1562 |