Unsupervised face identification in TV content using audio-visual sources
Our goal is to automatically identify faces in TV content without pre-defined dictionary of identities. Most of methods are based on identity detection (from OCR and ASR) and require a propagation strategy based on visual clusterings. In TV content, people appear with many variation making the clust...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 249 |
---|---|
container_issue | |
container_start_page | 243 |
container_title | |
container_volume | |
creator | Bendris, Meriem Favre, Benoit Charlet, Delphine Damnati, Geraldine Senay, Gregory Auguste, Remi Martinet, Jean |
description | Our goal is to automatically identify faces in TV content without pre-defined dictionary of identities. Most of methods are based on identity detection (from OCR and ASR) and require a propagation strategy based on visual clusterings. In TV content, people appear with many variation making the clustering very difficult. In this case, identifying speakers can be a reliable link to identify faces. In this work, we propose to combine reliable unsupervised face and speaker identification systems through talking-faces detection in order to improve face identification results. First, OCR and ASR results are combined to extract locally the identities. Then, the reliable visual associations are used to propagate those identities locally. The reliable identified faces are used as unsupervised models to identify similar faces. Finally speaker identities are propagated to the faces in case of lip activity detection. Experiments performed on the REPERE database show an improvement of the recall of +5% compared to the baseline, without degrading the precision. |
doi_str_mv | 10.1109/CBMI.2013.6576591 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6576591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6576591</ieee_id><sourcerecordid>6576591</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f7fe7a7cb78c09cb01acf6b8476be5ae3b7b21518417aba75fcb324938d21c693</originalsourceid><addsrcrecordid>eNo9kM1KAzEUheMfWGsfQNzkBWbMnUxyc5daqhYqblq3JckkEqkzZTIj-PYWrK4OnI_zLQ5jNyBKAEF384eXZVkJkKVWqBXBCbuCGokEKV2fsglQTYUkgjM2IzR_TMH5PzPyks1y_hBCHJwayUzYctPmcR_6r5RDw6P1gacmtEOKydshdS1PLV-_cd-1w6HmY07tO7djk7risBntjudu7H3I1-wi2l0Os2NO2eZxsZ4_F6vXp-X8flUkQDUUEWNAi96h8YK8E2B91M7UqF1QNkiHrgIFpga0zqKK3smqJmmaCrwmOWW3v94UQtju-_Rp--_t8RX5AwRhUq4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised face identification in TV content using audio-visual sources</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bendris, Meriem ; Favre, Benoit ; Charlet, Delphine ; Damnati, Geraldine ; Senay, Gregory ; Auguste, Remi ; Martinet, Jean</creator><creatorcontrib>Bendris, Meriem ; Favre, Benoit ; Charlet, Delphine ; Damnati, Geraldine ; Senay, Gregory ; Auguste, Remi ; Martinet, Jean</creatorcontrib><description>Our goal is to automatically identify faces in TV content without pre-defined dictionary of identities. Most of methods are based on identity detection (from OCR and ASR) and require a propagation strategy based on visual clusterings. In TV content, people appear with many variation making the clustering very difficult. In this case, identifying speakers can be a reliable link to identify faces. In this work, we propose to combine reliable unsupervised face and speaker identification systems through talking-faces detection in order to improve face identification results. First, OCR and ASR results are combined to extract locally the identities. Then, the reliable visual associations are used to propagate those identities locally. The reliable identified faces are used as unsupervised models to identify similar faces. Finally speaker identities are propagated to the faces in case of lip activity detection. Experiments performed on the REPERE database show an improvement of the recall of +5% compared to the baseline, without degrading the precision.</description><identifier>ISSN: 1949-3983</identifier><identifier>ISBN: 9781479909551</identifier><identifier>ISBN: 1479909556</identifier><identifier>EISSN: 1949-3991</identifier><identifier>EISBN: 1479909564</identifier><identifier>EISBN: 9781479909568</identifier><identifier>DOI: 10.1109/CBMI.2013.6576591</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Optical character recognition software ; Reliability ; Speech ; Videos ; Visualization</subject><ispartof>2013 11th International Workshop on Content-Based Multimedia Indexing (CBMI), 2013, p.243-249</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6576591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6576591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bendris, Meriem</creatorcontrib><creatorcontrib>Favre, Benoit</creatorcontrib><creatorcontrib>Charlet, Delphine</creatorcontrib><creatorcontrib>Damnati, Geraldine</creatorcontrib><creatorcontrib>Senay, Gregory</creatorcontrib><creatorcontrib>Auguste, Remi</creatorcontrib><creatorcontrib>Martinet, Jean</creatorcontrib><title>Unsupervised face identification in TV content using audio-visual sources</title><title>2013 11th International Workshop on Content-Based Multimedia Indexing (CBMI)</title><addtitle>CBMI</addtitle><description>Our goal is to automatically identify faces in TV content without pre-defined dictionary of identities. Most of methods are based on identity detection (from OCR and ASR) and require a propagation strategy based on visual clusterings. In TV content, people appear with many variation making the clustering very difficult. In this case, identifying speakers can be a reliable link to identify faces. In this work, we propose to combine reliable unsupervised face and speaker identification systems through talking-faces detection in order to improve face identification results. First, OCR and ASR results are combined to extract locally the identities. Then, the reliable visual associations are used to propagate those identities locally. The reliable identified faces are used as unsupervised models to identify similar faces. Finally speaker identities are propagated to the faces in case of lip activity detection. Experiments performed on the REPERE database show an improvement of the recall of +5% compared to the baseline, without degrading the precision.</description><subject>Face</subject><subject>Optical character recognition software</subject><subject>Reliability</subject><subject>Speech</subject><subject>Videos</subject><subject>Visualization</subject><issn>1949-3983</issn><issn>1949-3991</issn><isbn>9781479909551</isbn><isbn>1479909556</isbn><isbn>1479909564</isbn><isbn>9781479909568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1KAzEUheMfWGsfQNzkBWbMnUxyc5daqhYqblq3JckkEqkzZTIj-PYWrK4OnI_zLQ5jNyBKAEF384eXZVkJkKVWqBXBCbuCGokEKV2fsglQTYUkgjM2IzR_TMH5PzPyks1y_hBCHJwayUzYctPmcR_6r5RDw6P1gacmtEOKydshdS1PLV-_cd-1w6HmY07tO7djk7risBntjudu7H3I1-wi2l0Os2NO2eZxsZ4_F6vXp-X8flUkQDUUEWNAi96h8YK8E2B91M7UqF1QNkiHrgIFpga0zqKK3smqJmmaCrwmOWW3v94UQtju-_Rp--_t8RX5AwRhUq4</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Bendris, Meriem</creator><creator>Favre, Benoit</creator><creator>Charlet, Delphine</creator><creator>Damnati, Geraldine</creator><creator>Senay, Gregory</creator><creator>Auguste, Remi</creator><creator>Martinet, Jean</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Unsupervised face identification in TV content using audio-visual sources</title><author>Bendris, Meriem ; Favre, Benoit ; Charlet, Delphine ; Damnati, Geraldine ; Senay, Gregory ; Auguste, Remi ; Martinet, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f7fe7a7cb78c09cb01acf6b8476be5ae3b7b21518417aba75fcb324938d21c693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Face</topic><topic>Optical character recognition software</topic><topic>Reliability</topic><topic>Speech</topic><topic>Videos</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Bendris, Meriem</creatorcontrib><creatorcontrib>Favre, Benoit</creatorcontrib><creatorcontrib>Charlet, Delphine</creatorcontrib><creatorcontrib>Damnati, Geraldine</creatorcontrib><creatorcontrib>Senay, Gregory</creatorcontrib><creatorcontrib>Auguste, Remi</creatorcontrib><creatorcontrib>Martinet, Jean</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bendris, Meriem</au><au>Favre, Benoit</au><au>Charlet, Delphine</au><au>Damnati, Geraldine</au><au>Senay, Gregory</au><au>Auguste, Remi</au><au>Martinet, Jean</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised face identification in TV content using audio-visual sources</atitle><btitle>2013 11th International Workshop on Content-Based Multimedia Indexing (CBMI)</btitle><stitle>CBMI</stitle><date>2013-06</date><risdate>2013</risdate><spage>243</spage><epage>249</epage><pages>243-249</pages><issn>1949-3983</issn><eissn>1949-3991</eissn><isbn>9781479909551</isbn><isbn>1479909556</isbn><eisbn>1479909564</eisbn><eisbn>9781479909568</eisbn><abstract>Our goal is to automatically identify faces in TV content without pre-defined dictionary of identities. Most of methods are based on identity detection (from OCR and ASR) and require a propagation strategy based on visual clusterings. In TV content, people appear with many variation making the clustering very difficult. In this case, identifying speakers can be a reliable link to identify faces. In this work, we propose to combine reliable unsupervised face and speaker identification systems through talking-faces detection in order to improve face identification results. First, OCR and ASR results are combined to extract locally the identities. Then, the reliable visual associations are used to propagate those identities locally. The reliable identified faces are used as unsupervised models to identify similar faces. Finally speaker identities are propagated to the faces in case of lip activity detection. Experiments performed on the REPERE database show an improvement of the recall of +5% compared to the baseline, without degrading the precision.</abstract><pub>IEEE</pub><doi>10.1109/CBMI.2013.6576591</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3983 |
ispartof | 2013 11th International Workshop on Content-Based Multimedia Indexing (CBMI), 2013, p.243-249 |
issn | 1949-3983 1949-3991 |
language | eng |
recordid | cdi_ieee_primary_6576591 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Face Optical character recognition software Reliability Speech Videos Visualization |
title | Unsupervised face identification in TV content using audio-visual sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20face%20identification%20in%20TV%20content%20using%20audio-visual%20sources&rft.btitle=2013%2011th%20International%20Workshop%20on%20Content-Based%20Multimedia%20Indexing%20(CBMI)&rft.au=Bendris,%20Meriem&rft.date=2013-06&rft.spage=243&rft.epage=249&rft.pages=243-249&rft.issn=1949-3983&rft.eissn=1949-3991&rft.isbn=9781479909551&rft.isbn_list=1479909556&rft_id=info:doi/10.1109/CBMI.2013.6576591&rft_dat=%3Cieee_6IE%3E6576591%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479909564&rft.eisbn_list=9781479909568&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6576591&rfr_iscdi=true |