Geo-replicated storage with scalable deferred update replication
Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availabilit...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sciascia, Daniele Pedone, Fernando |
description | Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availability of a service. Locality is achieved by moving data closer to the users. High availability is attained by replicating data in multiple servers and sites. This paper considers a class of scalable replicated storage systems based on deferred update replication with transactional properties. The paper discusses different ways to deploy scalable deferred update replication in geographically distributed systems, considers the implications of these deployments on user-perceived latency, and proposes solutions. Our results are substantiated by a series of microbenchmarks and a social network application. |
doi_str_mv | 10.1109/DSN.2013.6575360 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6575360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6575360</ieee_id><sourcerecordid>6575360</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-b414494ec8d44f9a52325c5b073f75ac76cab3ded3999dffce0c7b876497070b3</originalsourceid><addsrcrecordid>eNpVkD1PxDAQRM2XRHSkR6LJH0hYe22v3YEOOJBOUAD1ybE3EBRIlAQh_j0ncRRUU7x5U4wQpxIqKcGfXz3eVwokVtaQQQt7IvfkpLaEVpOCfZEpaVyJXtHBPybxUGTSIJTgnD8W-TS9AYAE1Na5TFysuC9HHro2hplTMc39GF64-Grn12KKoQt1x0Xihsdxiz-HtK0Vf0Lbf5yIoyZ0E-e7XIjnm-un5W25fljdLS_XZaskzWWtpdZec3RJ68YHo1CZaGogbMiESDaGGhMn9N6npokMkWpHVnsCghoX4ux3t2XmzTC272H83uz-wB-6WE8c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Geo-replicated storage with scalable deferred update replication</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sciascia, Daniele ; Pedone, Fernando</creator><creatorcontrib>Sciascia, Daniele ; Pedone, Fernando</creatorcontrib><description>Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availability of a service. Locality is achieved by moving data closer to the users. High availability is attained by replicating data in multiple servers and sites. This paper considers a class of scalable replicated storage systems based on deferred update replication with transactional properties. The paper discusses different ways to deploy scalable deferred update replication in geographically distributed systems, considers the implications of these deployments on user-perceived latency, and proposes solutions. Our results are substantiated by a series of microbenchmarks and a social network application.</description><identifier>ISSN: 1530-0889</identifier><identifier>ISBN: 9781467364713</identifier><identifier>ISBN: 1467364711</identifier><identifier>EISSN: 2158-3927</identifier><identifier>EISBN: 9781467364720</identifier><identifier>EISBN: 146736472X</identifier><identifier>DOI: 10.1109/DSN.2013.6575360</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer crashes ; Database replication ; Delays ; fault tolerance ; high performance ; Partitioning algorithms ; Protocols ; scalable data store ; Servers ; transactional systems ; Wide area networks</subject><ispartof>2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2013, p.1-12</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6575360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6575360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sciascia, Daniele</creatorcontrib><creatorcontrib>Pedone, Fernando</creatorcontrib><title>Geo-replicated storage with scalable deferred update replication</title><title>2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)</title><addtitle>DSN</addtitle><description>Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availability of a service. Locality is achieved by moving data closer to the users. High availability is attained by replicating data in multiple servers and sites. This paper considers a class of scalable replicated storage systems based on deferred update replication with transactional properties. The paper discusses different ways to deploy scalable deferred update replication in geographically distributed systems, considers the implications of these deployments on user-perceived latency, and proposes solutions. Our results are substantiated by a series of microbenchmarks and a social network application.</description><subject>Computer crashes</subject><subject>Database replication</subject><subject>Delays</subject><subject>fault tolerance</subject><subject>high performance</subject><subject>Partitioning algorithms</subject><subject>Protocols</subject><subject>scalable data store</subject><subject>Servers</subject><subject>transactional systems</subject><subject>Wide area networks</subject><issn>1530-0889</issn><issn>2158-3927</issn><isbn>9781467364713</isbn><isbn>1467364711</isbn><isbn>9781467364720</isbn><isbn>146736472X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkD1PxDAQRM2XRHSkR6LJH0hYe22v3YEOOJBOUAD1ybE3EBRIlAQh_j0ncRRUU7x5U4wQpxIqKcGfXz3eVwokVtaQQQt7IvfkpLaEVpOCfZEpaVyJXtHBPybxUGTSIJTgnD8W-TS9AYAE1Na5TFysuC9HHro2hplTMc39GF64-Grn12KKoQt1x0Xihsdxiz-HtK0Vf0Lbf5yIoyZ0E-e7XIjnm-un5W25fljdLS_XZaskzWWtpdZec3RJ68YHo1CZaGogbMiESDaGGhMn9N6npokMkWpHVnsCghoX4ux3t2XmzTC272H83uz-wB-6WE8c</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sciascia, Daniele</creator><creator>Pedone, Fernando</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Geo-replicated storage with scalable deferred update replication</title><author>Sciascia, Daniele ; Pedone, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-b414494ec8d44f9a52325c5b073f75ac76cab3ded3999dffce0c7b876497070b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer crashes</topic><topic>Database replication</topic><topic>Delays</topic><topic>fault tolerance</topic><topic>high performance</topic><topic>Partitioning algorithms</topic><topic>Protocols</topic><topic>scalable data store</topic><topic>Servers</topic><topic>transactional systems</topic><topic>Wide area networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sciascia, Daniele</creatorcontrib><creatorcontrib>Pedone, Fernando</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sciascia, Daniele</au><au>Pedone, Fernando</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Geo-replicated storage with scalable deferred update replication</atitle><btitle>2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)</btitle><stitle>DSN</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1530-0889</issn><eissn>2158-3927</eissn><isbn>9781467364713</isbn><isbn>1467364711</isbn><eisbn>9781467364720</eisbn><eisbn>146736472X</eisbn><abstract>Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availability of a service. Locality is achieved by moving data closer to the users. High availability is attained by replicating data in multiple servers and sites. This paper considers a class of scalable replicated storage systems based on deferred update replication with transactional properties. The paper discusses different ways to deploy scalable deferred update replication in geographically distributed systems, considers the implications of these deployments on user-perceived latency, and proposes solutions. Our results are substantiated by a series of microbenchmarks and a social network application.</abstract><pub>IEEE</pub><doi>10.1109/DSN.2013.6575360</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-0889 |
ispartof | 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2013, p.1-12 |
issn | 1530-0889 2158-3927 |
language | eng |
recordid | cdi_ieee_primary_6575360 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer crashes Database replication Delays fault tolerance high performance Partitioning algorithms Protocols scalable data store Servers transactional systems Wide area networks |
title | Geo-replicated storage with scalable deferred update replication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Geo-replicated%20storage%20with%20scalable%20deferred%20update%20replication&rft.btitle=2013%2043rd%20Annual%20IEEE/IFIP%20International%20Conference%20on%20Dependable%20Systems%20and%20Networks%20(DSN)&rft.au=Sciascia,%20Daniele&rft.date=2013-01-01&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1530-0889&rft.eissn=2158-3927&rft.isbn=9781467364713&rft.isbn_list=1467364711&rft_id=info:doi/10.1109/DSN.2013.6575360&rft_dat=%3Cieee_6IE%3E6575360%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467364720&rft.eisbn_list=146736472X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6575360&rfr_iscdi=true |