Geo-replicated storage with scalable deferred update replication

Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sciascia, Daniele, Pedone, Fernando
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title
container_volume
creator Sciascia, Daniele
Pedone, Fernando
description Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availability of a service. Locality is achieved by moving data closer to the users. High availability is attained by replicating data in multiple servers and sites. This paper considers a class of scalable replicated storage systems based on deferred update replication with transactional properties. The paper discusses different ways to deploy scalable deferred update replication in geographically distributed systems, considers the implications of these deployments on user-perceived latency, and proposes solutions. Our results are substantiated by a series of microbenchmarks and a social network application.
doi_str_mv 10.1109/DSN.2013.6575360
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6575360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6575360</ieee_id><sourcerecordid>6575360</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-b414494ec8d44f9a52325c5b073f75ac76cab3ded3999dffce0c7b876497070b3</originalsourceid><addsrcrecordid>eNpVkD1PxDAQRM2XRHSkR6LJH0hYe22v3YEOOJBOUAD1ybE3EBRIlAQh_j0ncRRUU7x5U4wQpxIqKcGfXz3eVwokVtaQQQt7IvfkpLaEVpOCfZEpaVyJXtHBPybxUGTSIJTgnD8W-TS9AYAE1Na5TFysuC9HHro2hplTMc39GF64-Grn12KKoQt1x0Xihsdxiz-HtK0Vf0Lbf5yIoyZ0E-e7XIjnm-un5W25fljdLS_XZaskzWWtpdZec3RJ68YHo1CZaGogbMiESDaGGhMn9N6npokMkWpHVnsCghoX4ux3t2XmzTC272H83uz-wB-6WE8c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Geo-replicated storage with scalable deferred update replication</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sciascia, Daniele ; Pedone, Fernando</creator><creatorcontrib>Sciascia, Daniele ; Pedone, Fernando</creatorcontrib><description>Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availability of a service. Locality is achieved by moving data closer to the users. High availability is attained by replicating data in multiple servers and sites. This paper considers a class of scalable replicated storage systems based on deferred update replication with transactional properties. The paper discusses different ways to deploy scalable deferred update replication in geographically distributed systems, considers the implications of these deployments on user-perceived latency, and proposes solutions. Our results are substantiated by a series of microbenchmarks and a social network application.</description><identifier>ISSN: 1530-0889</identifier><identifier>ISBN: 9781467364713</identifier><identifier>ISBN: 1467364711</identifier><identifier>EISSN: 2158-3927</identifier><identifier>EISBN: 9781467364720</identifier><identifier>EISBN: 146736472X</identifier><identifier>DOI: 10.1109/DSN.2013.6575360</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer crashes ; Database replication ; Delays ; fault tolerance ; high performance ; Partitioning algorithms ; Protocols ; scalable data store ; Servers ; transactional systems ; Wide area networks</subject><ispartof>2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2013, p.1-12</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6575360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6575360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sciascia, Daniele</creatorcontrib><creatorcontrib>Pedone, Fernando</creatorcontrib><title>Geo-replicated storage with scalable deferred update replication</title><title>2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)</title><addtitle>DSN</addtitle><description>Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availability of a service. Locality is achieved by moving data closer to the users. High availability is attained by replicating data in multiple servers and sites. This paper considers a class of scalable replicated storage systems based on deferred update replication with transactional properties. The paper discusses different ways to deploy scalable deferred update replication in geographically distributed systems, considers the implications of these deployments on user-perceived latency, and proposes solutions. Our results are substantiated by a series of microbenchmarks and a social network application.</description><subject>Computer crashes</subject><subject>Database replication</subject><subject>Delays</subject><subject>fault tolerance</subject><subject>high performance</subject><subject>Partitioning algorithms</subject><subject>Protocols</subject><subject>scalable data store</subject><subject>Servers</subject><subject>transactional systems</subject><subject>Wide area networks</subject><issn>1530-0889</issn><issn>2158-3927</issn><isbn>9781467364713</isbn><isbn>1467364711</isbn><isbn>9781467364720</isbn><isbn>146736472X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkD1PxDAQRM2XRHSkR6LJH0hYe22v3YEOOJBOUAD1ybE3EBRIlAQh_j0ncRRUU7x5U4wQpxIqKcGfXz3eVwokVtaQQQt7IvfkpLaEVpOCfZEpaVyJXtHBPybxUGTSIJTgnD8W-TS9AYAE1Na5TFysuC9HHro2hplTMc39GF64-Grn12KKoQt1x0Xihsdxiz-HtK0Vf0Lbf5yIoyZ0E-e7XIjnm-un5W25fljdLS_XZaskzWWtpdZec3RJ68YHo1CZaGogbMiESDaGGhMn9N6npokMkWpHVnsCghoX4ux3t2XmzTC272H83uz-wB-6WE8c</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sciascia, Daniele</creator><creator>Pedone, Fernando</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Geo-replicated storage with scalable deferred update replication</title><author>Sciascia, Daniele ; Pedone, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-b414494ec8d44f9a52325c5b073f75ac76cab3ded3999dffce0c7b876497070b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer crashes</topic><topic>Database replication</topic><topic>Delays</topic><topic>fault tolerance</topic><topic>high performance</topic><topic>Partitioning algorithms</topic><topic>Protocols</topic><topic>scalable data store</topic><topic>Servers</topic><topic>transactional systems</topic><topic>Wide area networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sciascia, Daniele</creatorcontrib><creatorcontrib>Pedone, Fernando</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sciascia, Daniele</au><au>Pedone, Fernando</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Geo-replicated storage with scalable deferred update replication</atitle><btitle>2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)</btitle><stitle>DSN</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1530-0889</issn><eissn>2158-3927</eissn><isbn>9781467364713</isbn><isbn>1467364711</isbn><eisbn>9781467364720</eisbn><eisbn>146736472X</eisbn><abstract>Many current online services are deployed over geographically distributed sites (i.e., datacenters). Such distributed services call for geo-replicated storage, that is, storage distributed and replicated among many sites. Geographical distribution and replication can improve locality and availability of a service. Locality is achieved by moving data closer to the users. High availability is attained by replicating data in multiple servers and sites. This paper considers a class of scalable replicated storage systems based on deferred update replication with transactional properties. The paper discusses different ways to deploy scalable deferred update replication in geographically distributed systems, considers the implications of these deployments on user-perceived latency, and proposes solutions. Our results are substantiated by a series of microbenchmarks and a social network application.</abstract><pub>IEEE</pub><doi>10.1109/DSN.2013.6575360</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-0889
ispartof 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2013, p.1-12
issn 1530-0889
2158-3927
language eng
recordid cdi_ieee_primary_6575360
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer crashes
Database replication
Delays
fault tolerance
high performance
Partitioning algorithms
Protocols
scalable data store
Servers
transactional systems
Wide area networks
title Geo-replicated storage with scalable deferred update replication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Geo-replicated%20storage%20with%20scalable%20deferred%20update%20replication&rft.btitle=2013%2043rd%20Annual%20IEEE/IFIP%20International%20Conference%20on%20Dependable%20Systems%20and%20Networks%20(DSN)&rft.au=Sciascia,%20Daniele&rft.date=2013-01-01&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1530-0889&rft.eissn=2158-3927&rft.isbn=9781467364713&rft.isbn_list=1467364711&rft_id=info:doi/10.1109/DSN.2013.6575360&rft_dat=%3Cieee_6IE%3E6575360%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467364720&rft.eisbn_list=146736472X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6575360&rfr_iscdi=true