Enhanced Quench Propagation in BiSrCaCuO and YBaCuO Coils via a Nanoscale Doped-Titania-Based Thermally Conducting Electrical Insulator
The significant amount of energy stored in a large high-field superconducting magnet can be sufficient to destroy the coil in the event of an unprotected quench. For magnets based on high-temperature superconductors (HTSs), such as Bi 2 Sr 2 CaCu 2 O x (Bi2212) and YBa 2 Cu 3 O 7-x (YBCO), quench pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2013-10, Vol.23 (5), p.7201311-7201311 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7201311 |
---|---|
container_issue | 5 |
container_start_page | 7201311 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 23 |
creator | Ishmael, Sasha Haojun Luo White, Marvis Hunte, Frank Liu, X. T. Mandzy, Natalia Muth, John F. Naderi, Golsa Liyang Ye Hunt, Andrew T. Schwartz, Justin |
description | The significant amount of energy stored in a large high-field superconducting magnet can be sufficient to destroy the coil in the event of an unprotected quench. For magnets based on high-temperature superconductors (HTSs), such as Bi 2 Sr 2 CaCu 2 O x (Bi2212) and YBa 2 Cu 3 O 7-x (YBCO), quench protection is particularly challenging due to slow normal zone propagation. A previous computational study showed that the quench behavior of HTS magnets is significantly improved if the turn-to-turn electrical insulation is thermally conducting, enhancing 3-D normal zone propagation. Here, a new doped-titania electrical insulation with high thermal conductivity is evaluated. The thermal conductivity of the insulation is measured at cryogenic temperatures, and its chemical compatibility with Bi2212 round wires is determined. Thin layers of the insulation are deposited onto the surface of Bi2212 and YBCO wires, which are then wound into small coils to study the quench behavior. Results show that the critical current and homogeneity of Bi2212 coils are improved relative to coils reacted with mullite insulation. Relative to similar coils with conventional insulation (mullite for Bi2212 and Kapton for YBCO), the turn-to-turn quench propagation is increased by a factor of 2.8 in Bi2212 coils at 4.2 K and self-field and by a factor of 2.5 in YBCO coils at 4.2 K and 5 T. These results indicate that doped-titania insulation may significantly improve Bi2212 and YBCO coils. Increased normal zone propagation velocity enhances quench detection and quench protection, and the thinness of the insulation relative to the most common alternatives increases the magnet winding pack current density and reduces the coil specific heat. |
doi_str_mv | 10.1109/TASC.2013.2269535 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_6574265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6574265</ieee_id><sourcerecordid>6574265</sourcerecordid><originalsourceid>FETCH-ieee_primary_65742653</originalsourceid><addsrcrecordid>eNp9jM1KxDAURoMoOP48gLi5L9CapE3tLG2t6MYfphtXw6WN0yuZm5K0wjyBr20R166-Ax_nCHGlZKqUXN-0d5s61VJlqdbF2mTmSKyUMWWijTLHC0ujklLr7FScxfgppcrL3KzEd8MDcmd7eJstdwO8Bj_iDifyDMRQ0SbUWM8vgNzDe_WLtScX4YsQEJ6RfezQWbj3o-2TliZkwqTCuETbwYY9OndYHO7nbiLeQeNsNwVaJHjiODucfLgQJx_oor3823Nx_dC09WNC1trtGGiP4bAtzG2uC5P9__4AFqNSsA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Quench Propagation in BiSrCaCuO and YBaCuO Coils via a Nanoscale Doped-Titania-Based Thermally Conducting Electrical Insulator</title><source>IEEE Electronic Library (IEL)</source><creator>Ishmael, Sasha ; Haojun Luo ; White, Marvis ; Hunte, Frank ; Liu, X. T. ; Mandzy, Natalia ; Muth, John F. ; Naderi, Golsa ; Liyang Ye ; Hunt, Andrew T. ; Schwartz, Justin</creator><creatorcontrib>Ishmael, Sasha ; Haojun Luo ; White, Marvis ; Hunte, Frank ; Liu, X. T. ; Mandzy, Natalia ; Muth, John F. ; Naderi, Golsa ; Liyang Ye ; Hunt, Andrew T. ; Schwartz, Justin</creatorcontrib><description>The significant amount of energy stored in a large high-field superconducting magnet can be sufficient to destroy the coil in the event of an unprotected quench. For magnets based on high-temperature superconductors (HTSs), such as Bi 2 Sr 2 CaCu 2 O x (Bi2212) and YBa 2 Cu 3 O 7-x (YBCO), quench protection is particularly challenging due to slow normal zone propagation. A previous computational study showed that the quench behavior of HTS magnets is significantly improved if the turn-to-turn electrical insulation is thermally conducting, enhancing 3-D normal zone propagation. Here, a new doped-titania electrical insulation with high thermal conductivity is evaluated. The thermal conductivity of the insulation is measured at cryogenic temperatures, and its chemical compatibility with Bi2212 round wires is determined. Thin layers of the insulation are deposited onto the surface of Bi2212 and YBCO wires, which are then wound into small coils to study the quench behavior. Results show that the critical current and homogeneity of Bi2212 coils are improved relative to coils reacted with mullite insulation. Relative to similar coils with conventional insulation (mullite for Bi2212 and Kapton for YBCO), the turn-to-turn quench propagation is increased by a factor of 2.8 in Bi2212 coils at 4.2 K and self-field and by a factor of 2.5 in YBCO coils at 4.2 K and 5 T. These results indicate that doped-titania insulation may significantly improve Bi2212 and YBCO coils. Increased normal zone propagation velocity enhances quench detection and quench protection, and the thinness of the insulation relative to the most common alternatives increases the magnet winding pack current density and reduces the coil specific heat.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2013.2269535</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coils ; hbox{Bi}_{2}\hbox{Sr}_{2}\hbox{CaCu}_{2}\hbox{O}_{x} ; hbox{YBa}_{2}\hbox{Cu}_{3}\hbox{O}_{7 - x} ; Heating ; high-temperature superconductor (HTS) ; Insulation ; quench detection ; quench protection ; Temperature measurement ; Thermal conductivity ; Wires ; Yttrium barium copper oxide</subject><ispartof>IEEE transactions on applied superconductivity, 2013-10, Vol.23 (5), p.7201311-7201311</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6574265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6574265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishmael, Sasha</creatorcontrib><creatorcontrib>Haojun Luo</creatorcontrib><creatorcontrib>White, Marvis</creatorcontrib><creatorcontrib>Hunte, Frank</creatorcontrib><creatorcontrib>Liu, X. T.</creatorcontrib><creatorcontrib>Mandzy, Natalia</creatorcontrib><creatorcontrib>Muth, John F.</creatorcontrib><creatorcontrib>Naderi, Golsa</creatorcontrib><creatorcontrib>Liyang Ye</creatorcontrib><creatorcontrib>Hunt, Andrew T.</creatorcontrib><creatorcontrib>Schwartz, Justin</creatorcontrib><title>Enhanced Quench Propagation in BiSrCaCuO and YBaCuO Coils via a Nanoscale Doped-Titania-Based Thermally Conducting Electrical Insulator</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The significant amount of energy stored in a large high-field superconducting magnet can be sufficient to destroy the coil in the event of an unprotected quench. For magnets based on high-temperature superconductors (HTSs), such as Bi 2 Sr 2 CaCu 2 O x (Bi2212) and YBa 2 Cu 3 O 7-x (YBCO), quench protection is particularly challenging due to slow normal zone propagation. A previous computational study showed that the quench behavior of HTS magnets is significantly improved if the turn-to-turn electrical insulation is thermally conducting, enhancing 3-D normal zone propagation. Here, a new doped-titania electrical insulation with high thermal conductivity is evaluated. The thermal conductivity of the insulation is measured at cryogenic temperatures, and its chemical compatibility with Bi2212 round wires is determined. Thin layers of the insulation are deposited onto the surface of Bi2212 and YBCO wires, which are then wound into small coils to study the quench behavior. Results show that the critical current and homogeneity of Bi2212 coils are improved relative to coils reacted with mullite insulation. Relative to similar coils with conventional insulation (mullite for Bi2212 and Kapton for YBCO), the turn-to-turn quench propagation is increased by a factor of 2.8 in Bi2212 coils at 4.2 K and self-field and by a factor of 2.5 in YBCO coils at 4.2 K and 5 T. These results indicate that doped-titania insulation may significantly improve Bi2212 and YBCO coils. Increased normal zone propagation velocity enhances quench detection and quench protection, and the thinness of the insulation relative to the most common alternatives increases the magnet winding pack current density and reduces the coil specific heat.</description><subject>Coils</subject><subject>hbox{Bi}_{2}\hbox{Sr}_{2}\hbox{CaCu}_{2}\hbox{O}_{x}</subject><subject>hbox{YBa}_{2}\hbox{Cu}_{3}\hbox{O}_{7 - x}</subject><subject>Heating</subject><subject>high-temperature superconductor (HTS)</subject><subject>Insulation</subject><subject>quench detection</subject><subject>quench protection</subject><subject>Temperature measurement</subject><subject>Thermal conductivity</subject><subject>Wires</subject><subject>Yttrium barium copper oxide</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9jM1KxDAURoMoOP48gLi5L9CapE3tLG2t6MYfphtXw6WN0yuZm5K0wjyBr20R166-Ax_nCHGlZKqUXN-0d5s61VJlqdbF2mTmSKyUMWWijTLHC0ujklLr7FScxfgppcrL3KzEd8MDcmd7eJstdwO8Bj_iDifyDMRQ0SbUWM8vgNzDe_WLtScX4YsQEJ6RfezQWbj3o-2TliZkwqTCuETbwYY9OndYHO7nbiLeQeNsNwVaJHjiODucfLgQJx_oor3823Nx_dC09WNC1trtGGiP4bAtzG2uC5P9__4AFqNSsA</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Ishmael, Sasha</creator><creator>Haojun Luo</creator><creator>White, Marvis</creator><creator>Hunte, Frank</creator><creator>Liu, X. T.</creator><creator>Mandzy, Natalia</creator><creator>Muth, John F.</creator><creator>Naderi, Golsa</creator><creator>Liyang Ye</creator><creator>Hunt, Andrew T.</creator><creator>Schwartz, Justin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>201310</creationdate><title>Enhanced Quench Propagation in BiSrCaCuO and YBaCuO Coils via a Nanoscale Doped-Titania-Based Thermally Conducting Electrical Insulator</title><author>Ishmael, Sasha ; Haojun Luo ; White, Marvis ; Hunte, Frank ; Liu, X. T. ; Mandzy, Natalia ; Muth, John F. ; Naderi, Golsa ; Liyang Ye ; Hunt, Andrew T. ; Schwartz, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_65742653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Coils</topic><topic>hbox{Bi}_{2}\hbox{Sr}_{2}\hbox{CaCu}_{2}\hbox{O}_{x}</topic><topic>hbox{YBa}_{2}\hbox{Cu}_{3}\hbox{O}_{7 - x}</topic><topic>Heating</topic><topic>high-temperature superconductor (HTS)</topic><topic>Insulation</topic><topic>quench detection</topic><topic>quench protection</topic><topic>Temperature measurement</topic><topic>Thermal conductivity</topic><topic>Wires</topic><topic>Yttrium barium copper oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishmael, Sasha</creatorcontrib><creatorcontrib>Haojun Luo</creatorcontrib><creatorcontrib>White, Marvis</creatorcontrib><creatorcontrib>Hunte, Frank</creatorcontrib><creatorcontrib>Liu, X. T.</creatorcontrib><creatorcontrib>Mandzy, Natalia</creatorcontrib><creatorcontrib>Muth, John F.</creatorcontrib><creatorcontrib>Naderi, Golsa</creatorcontrib><creatorcontrib>Liyang Ye</creatorcontrib><creatorcontrib>Hunt, Andrew T.</creatorcontrib><creatorcontrib>Schwartz, Justin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishmael, Sasha</au><au>Haojun Luo</au><au>White, Marvis</au><au>Hunte, Frank</au><au>Liu, X. T.</au><au>Mandzy, Natalia</au><au>Muth, John F.</au><au>Naderi, Golsa</au><au>Liyang Ye</au><au>Hunt, Andrew T.</au><au>Schwartz, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Quench Propagation in BiSrCaCuO and YBaCuO Coils via a Nanoscale Doped-Titania-Based Thermally Conducting Electrical Insulator</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-10</date><risdate>2013</risdate><volume>23</volume><issue>5</issue><spage>7201311</spage><epage>7201311</epage><pages>7201311-7201311</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The significant amount of energy stored in a large high-field superconducting magnet can be sufficient to destroy the coil in the event of an unprotected quench. For magnets based on high-temperature superconductors (HTSs), such as Bi 2 Sr 2 CaCu 2 O x (Bi2212) and YBa 2 Cu 3 O 7-x (YBCO), quench protection is particularly challenging due to slow normal zone propagation. A previous computational study showed that the quench behavior of HTS magnets is significantly improved if the turn-to-turn electrical insulation is thermally conducting, enhancing 3-D normal zone propagation. Here, a new doped-titania electrical insulation with high thermal conductivity is evaluated. The thermal conductivity of the insulation is measured at cryogenic temperatures, and its chemical compatibility with Bi2212 round wires is determined. Thin layers of the insulation are deposited onto the surface of Bi2212 and YBCO wires, which are then wound into small coils to study the quench behavior. Results show that the critical current and homogeneity of Bi2212 coils are improved relative to coils reacted with mullite insulation. Relative to similar coils with conventional insulation (mullite for Bi2212 and Kapton for YBCO), the turn-to-turn quench propagation is increased by a factor of 2.8 in Bi2212 coils at 4.2 K and self-field and by a factor of 2.5 in YBCO coils at 4.2 K and 5 T. These results indicate that doped-titania insulation may significantly improve Bi2212 and YBCO coils. Increased normal zone propagation velocity enhances quench detection and quench protection, and the thinness of the insulation relative to the most common alternatives increases the magnet winding pack current density and reduces the coil specific heat.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2013.2269535</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2013-10, Vol.23 (5), p.7201311-7201311 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_6574265 |
source | IEEE Electronic Library (IEL) |
subjects | Coils hbox{Bi}_{2}\hbox{Sr}_{2}\hbox{CaCu}_{2}\hbox{O}_{x} hbox{YBa}_{2}\hbox{Cu}_{3}\hbox{O}_{7 - x} Heating high-temperature superconductor (HTS) Insulation quench detection quench protection Temperature measurement Thermal conductivity Wires Yttrium barium copper oxide |
title | Enhanced Quench Propagation in BiSrCaCuO and YBaCuO Coils via a Nanoscale Doped-Titania-Based Thermally Conducting Electrical Insulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Quench%20Propagation%20in%20BiSrCaCuO%20and%20YBaCuO%20Coils%20via%20a%20Nanoscale%20Doped-Titania-Based%20Thermally%20Conducting%20Electrical%20Insulator&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Ishmael,%20Sasha&rft.date=2013-10&rft.volume=23&rft.issue=5&rft.spage=7201311&rft.epage=7201311&rft.pages=7201311-7201311&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2013.2269535&rft_dat=%3Cieee_RIE%3E6574265%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6574265&rfr_iscdi=true |