Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation

A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2014-02, Vol.11 (2), p.534-538
Hauptverfasser: Ristorcelli, Thomas, Hamoir, Dominique, Briottet, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 2
container_start_page 534
container_title IEEE geoscience and remote sensing letters
container_volume 11
creator Ristorcelli, Thomas
Hamoir, Dominique
Briottet, Xavier
description A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use the DELiS code (n-Dimensional Estimation of Lidar Signals) to numerically evaluate a simple, efficient aggregation method for combining airborne lidar measurements (submeter footprints) into space lidar signals (decametric footprints). Two main sources of error are studied: the heterogeneity of the scene combined with an insufficient coverage by the airborne scanner, and the multiple scattering of the laser pulse in vegetation. It is found that for three different types of vegetation (corn, orchard, rainforest), and in three usual scanning configurations, the satellite signal can be derived with good precision. However, multiple scattering in the vegetation is shown to induce errors of up to 30% of the total backscattered signal depending on the wavelength.
doi_str_mv 10.1109/LGRS.2013.2273801
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6573338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6573338</ieee_id><sourcerecordid>10_1109_LGRS_2013_2273801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-da5beecc713a1ad1f1c8931b52a2a56f7353bd556178d37e62872cd99cb573e63</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhBdRsFYfQLzZF0jds9vNbi5LtVUIFIx_d-Fkc1IiTVI2seDbu7HFq5mLmWH4GLsFMQMQyX26fslmUoCaSWmUFXDGJqC1jYQ2cD76uY50Yj8v2VXffwkh59aaCWuzuvne4VC3W57t0RFP6xI9_8ADVZ1ver7yXcOzBnc78tGq64a9r9uBL2pfdL4NeezJ88xh2wZ9wAF5KPJ32tIQdruWb4qQOPz5a3ZR4a6nm5NO2dvq8XX5FKWb9fNykUZOxnqIStQFkXMGFAKWUIGziYJCS5So48oorYpS6xiMLZWhWFojXZkkrtBGUaymDI67znd976nKw-sG_U8OIh-B5SOwfASWn4CFzt2xUxPRfz4Og0pZ9Qs0iGlB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation</title><source>IEEE Electronic Library (IEL)</source><creator>Ristorcelli, Thomas ; Hamoir, Dominique ; Briottet, Xavier</creator><creatorcontrib>Ristorcelli, Thomas ; Hamoir, Dominique ; Briottet, Xavier</creatorcontrib><description>A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use the DELiS code (n-Dimensional Estimation of Lidar Signals) to numerically evaluate a simple, efficient aggregation method for combining airborne lidar measurements (submeter footprints) into space lidar signals (decametric footprints). Two main sources of error are studied: the heterogeneity of the scene combined with an insufficient coverage by the airborne scanner, and the multiple scattering of the laser pulse in vegetation. It is found that for three different types of vegetation (corn, orchard, rainforest), and in three usual scanning configurations, the satellite signal can be derived with good precision. However, multiple scattering in the vegetation is shown to induce errors of up to 30% of the total backscattered signal depending on the wavelength.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2013.2273801</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne laser scanner ; Atmospheric modeling ; fullwaveform lidar ; Laser modes ; Laser radar ; multiple scattering ; optical radar ; satellite lidar ; Satellites ; Scattering ; Sensors ; vegetation ; Vegetation mapping</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-02, Vol.11 (2), p.534-538</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-da5beecc713a1ad1f1c8931b52a2a56f7353bd556178d37e62872cd99cb573e63</citedby><cites>FETCH-LOGICAL-c265t-da5beecc713a1ad1f1c8931b52a2a56f7353bd556178d37e62872cd99cb573e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6573338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6573338$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ristorcelli, Thomas</creatorcontrib><creatorcontrib>Hamoir, Dominique</creatorcontrib><creatorcontrib>Briottet, Xavier</creatorcontrib><title>Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use the DELiS code (n-Dimensional Estimation of Lidar Signals) to numerically evaluate a simple, efficient aggregation method for combining airborne lidar measurements (submeter footprints) into space lidar signals (decametric footprints). Two main sources of error are studied: the heterogeneity of the scene combined with an insufficient coverage by the airborne scanner, and the multiple scattering of the laser pulse in vegetation. It is found that for three different types of vegetation (corn, orchard, rainforest), and in three usual scanning configurations, the satellite signal can be derived with good precision. However, multiple scattering in the vegetation is shown to induce errors of up to 30% of the total backscattered signal depending on the wavelength.</description><subject>Airborne laser scanner</subject><subject>Atmospheric modeling</subject><subject>fullwaveform lidar</subject><subject>Laser modes</subject><subject>Laser radar</subject><subject>multiple scattering</subject><subject>optical radar</subject><subject>satellite lidar</subject><subject>Satellites</subject><subject>Scattering</subject><subject>Sensors</subject><subject>vegetation</subject><subject>Vegetation mapping</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1Kw0AUhBdRsFYfQLzZF0jds9vNbi5LtVUIFIx_d-Fkc1IiTVI2seDbu7HFq5mLmWH4GLsFMQMQyX26fslmUoCaSWmUFXDGJqC1jYQ2cD76uY50Yj8v2VXffwkh59aaCWuzuvne4VC3W57t0RFP6xI9_8ADVZ1ver7yXcOzBnc78tGq64a9r9uBL2pfdL4NeezJ88xh2wZ9wAF5KPJ32tIQdruWb4qQOPz5a3ZR4a6nm5NO2dvq8XX5FKWb9fNykUZOxnqIStQFkXMGFAKWUIGziYJCS5So48oorYpS6xiMLZWhWFojXZkkrtBGUaymDI67znd976nKw-sG_U8OIh-B5SOwfASWn4CFzt2xUxPRfz4Og0pZ9Qs0iGlB</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Ristorcelli, Thomas</creator><creator>Hamoir, Dominique</creator><creator>Briottet, Xavier</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140201</creationdate><title>Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation</title><author>Ristorcelli, Thomas ; Hamoir, Dominique ; Briottet, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-da5beecc713a1ad1f1c8931b52a2a56f7353bd556178d37e62872cd99cb573e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Airborne laser scanner</topic><topic>Atmospheric modeling</topic><topic>fullwaveform lidar</topic><topic>Laser modes</topic><topic>Laser radar</topic><topic>multiple scattering</topic><topic>optical radar</topic><topic>satellite lidar</topic><topic>Satellites</topic><topic>Scattering</topic><topic>Sensors</topic><topic>vegetation</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ristorcelli, Thomas</creatorcontrib><creatorcontrib>Hamoir, Dominique</creatorcontrib><creatorcontrib>Briottet, Xavier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ristorcelli, Thomas</au><au>Hamoir, Dominique</au><au>Briottet, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>11</volume><issue>2</issue><spage>534</spage><epage>538</epage><pages>534-538</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use the DELiS code (n-Dimensional Estimation of Lidar Signals) to numerically evaluate a simple, efficient aggregation method for combining airborne lidar measurements (submeter footprints) into space lidar signals (decametric footprints). Two main sources of error are studied: the heterogeneity of the scene combined with an insufficient coverage by the airborne scanner, and the multiple scattering of the laser pulse in vegetation. It is found that for three different types of vegetation (corn, orchard, rainforest), and in three usual scanning configurations, the satellite signal can be derived with good precision. However, multiple scattering in the vegetation is shown to induce errors of up to 30% of the total backscattered signal depending on the wavelength.</abstract><pub>IEEE</pub><doi>10.1109/LGRS.2013.2273801</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2014-02, Vol.11 (2), p.534-538
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_6573338
source IEEE Electronic Library (IEL)
subjects Airborne laser scanner
Atmospheric modeling
fullwaveform lidar
Laser modes
Laser radar
multiple scattering
optical radar
satellite lidar
Satellites
Scattering
Sensors
vegetation
Vegetation mapping
title Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20Space%20Lidar%20Waveforms%20From%20Smaller-Footprint%20Airborne%20Laser%20Scanner%20Data%20for%20Vegetation%20Observation&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ristorcelli,%20Thomas&rft.date=2014-02-01&rft.volume=11&rft.issue=2&rft.spage=534&rft.epage=538&rft.pages=534-538&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2013.2273801&rft_dat=%3Ccrossref_RIE%3E10_1109_LGRS_2013_2273801%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6573338&rfr_iscdi=true