Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation
A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2014-02, Vol.11 (2), p.534-538 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | 2 |
container_start_page | 534 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 11 |
creator | Ristorcelli, Thomas Hamoir, Dominique Briottet, Xavier |
description | A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use the DELiS code (n-Dimensional Estimation of Lidar Signals) to numerically evaluate a simple, efficient aggregation method for combining airborne lidar measurements (submeter footprints) into space lidar signals (decametric footprints). Two main sources of error are studied: the heterogeneity of the scene combined with an insufficient coverage by the airborne scanner, and the multiple scattering of the laser pulse in vegetation. It is found that for three different types of vegetation (corn, orchard, rainforest), and in three usual scanning configurations, the satellite signal can be derived with good precision. However, multiple scattering in the vegetation is shown to induce errors of up to 30% of the total backscattered signal depending on the wavelength. |
doi_str_mv | 10.1109/LGRS.2013.2273801 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6573338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6573338</ieee_id><sourcerecordid>10_1109_LGRS_2013_2273801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-da5beecc713a1ad1f1c8931b52a2a56f7353bd556178d37e62872cd99cb573e63</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhBdRsFYfQLzZF0jds9vNbi5LtVUIFIx_d-Fkc1IiTVI2seDbu7HFq5mLmWH4GLsFMQMQyX26fslmUoCaSWmUFXDGJqC1jYQ2cD76uY50Yj8v2VXffwkh59aaCWuzuvne4VC3W57t0RFP6xI9_8ADVZ1ver7yXcOzBnc78tGq64a9r9uBL2pfdL4NeezJ88xh2wZ9wAF5KPJ32tIQdruWb4qQOPz5a3ZR4a6nm5NO2dvq8XX5FKWb9fNykUZOxnqIStQFkXMGFAKWUIGziYJCS5So48oorYpS6xiMLZWhWFojXZkkrtBGUaymDI67znd976nKw-sG_U8OIh-B5SOwfASWn4CFzt2xUxPRfz4Og0pZ9Qs0iGlB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation</title><source>IEEE Electronic Library (IEL)</source><creator>Ristorcelli, Thomas ; Hamoir, Dominique ; Briottet, Xavier</creator><creatorcontrib>Ristorcelli, Thomas ; Hamoir, Dominique ; Briottet, Xavier</creatorcontrib><description>A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use the DELiS code (n-Dimensional Estimation of Lidar Signals) to numerically evaluate a simple, efficient aggregation method for combining airborne lidar measurements (submeter footprints) into space lidar signals (decametric footprints). Two main sources of error are studied: the heterogeneity of the scene combined with an insufficient coverage by the airborne scanner, and the multiple scattering of the laser pulse in vegetation. It is found that for three different types of vegetation (corn, orchard, rainforest), and in three usual scanning configurations, the satellite signal can be derived with good precision. However, multiple scattering in the vegetation is shown to induce errors of up to 30% of the total backscattered signal depending on the wavelength.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2013.2273801</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne laser scanner ; Atmospheric modeling ; fullwaveform lidar ; Laser modes ; Laser radar ; multiple scattering ; optical radar ; satellite lidar ; Satellites ; Scattering ; Sensors ; vegetation ; Vegetation mapping</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-02, Vol.11 (2), p.534-538</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-da5beecc713a1ad1f1c8931b52a2a56f7353bd556178d37e62872cd99cb573e63</citedby><cites>FETCH-LOGICAL-c265t-da5beecc713a1ad1f1c8931b52a2a56f7353bd556178d37e62872cd99cb573e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6573338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6573338$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ristorcelli, Thomas</creatorcontrib><creatorcontrib>Hamoir, Dominique</creatorcontrib><creatorcontrib>Briottet, Xavier</creatorcontrib><title>Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use the DELiS code (n-Dimensional Estimation of Lidar Signals) to numerically evaluate a simple, efficient aggregation method for combining airborne lidar measurements (submeter footprints) into space lidar signals (decametric footprints). Two main sources of error are studied: the heterogeneity of the scene combined with an insufficient coverage by the airborne scanner, and the multiple scattering of the laser pulse in vegetation. It is found that for three different types of vegetation (corn, orchard, rainforest), and in three usual scanning configurations, the satellite signal can be derived with good precision. However, multiple scattering in the vegetation is shown to induce errors of up to 30% of the total backscattered signal depending on the wavelength.</description><subject>Airborne laser scanner</subject><subject>Atmospheric modeling</subject><subject>fullwaveform lidar</subject><subject>Laser modes</subject><subject>Laser radar</subject><subject>multiple scattering</subject><subject>optical radar</subject><subject>satellite lidar</subject><subject>Satellites</subject><subject>Scattering</subject><subject>Sensors</subject><subject>vegetation</subject><subject>Vegetation mapping</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1Kw0AUhBdRsFYfQLzZF0jds9vNbi5LtVUIFIx_d-Fkc1IiTVI2seDbu7HFq5mLmWH4GLsFMQMQyX26fslmUoCaSWmUFXDGJqC1jYQ2cD76uY50Yj8v2VXffwkh59aaCWuzuvne4VC3W57t0RFP6xI9_8ADVZ1ver7yXcOzBnc78tGq64a9r9uBL2pfdL4NeezJ88xh2wZ9wAF5KPJ32tIQdruWb4qQOPz5a3ZR4a6nm5NO2dvq8XX5FKWb9fNykUZOxnqIStQFkXMGFAKWUIGziYJCS5So48oorYpS6xiMLZWhWFojXZkkrtBGUaymDI67znd976nKw-sG_U8OIh-B5SOwfASWn4CFzt2xUxPRfz4Og0pZ9Qs0iGlB</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Ristorcelli, Thomas</creator><creator>Hamoir, Dominique</creator><creator>Briottet, Xavier</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140201</creationdate><title>Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation</title><author>Ristorcelli, Thomas ; Hamoir, Dominique ; Briottet, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-da5beecc713a1ad1f1c8931b52a2a56f7353bd556178d37e62872cd99cb573e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Airborne laser scanner</topic><topic>Atmospheric modeling</topic><topic>fullwaveform lidar</topic><topic>Laser modes</topic><topic>Laser radar</topic><topic>multiple scattering</topic><topic>optical radar</topic><topic>satellite lidar</topic><topic>Satellites</topic><topic>Scattering</topic><topic>Sensors</topic><topic>vegetation</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ristorcelli, Thomas</creatorcontrib><creatorcontrib>Hamoir, Dominique</creatorcontrib><creatorcontrib>Briottet, Xavier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ristorcelli, Thomas</au><au>Hamoir, Dominique</au><au>Briottet, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>11</volume><issue>2</issue><spage>534</spage><epage>538</epage><pages>534-538</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A possible step in dimensioning future space-based full-waveform lidar sensors is to predict space signals from commercial airborne laser scanner data. This method has proved able to simulate passive satellite sensors with precise accounting of the scene heterogeneity effects. In this letter, we use the DELiS code (n-Dimensional Estimation of Lidar Signals) to numerically evaluate a simple, efficient aggregation method for combining airborne lidar measurements (submeter footprints) into space lidar signals (decametric footprints). Two main sources of error are studied: the heterogeneity of the scene combined with an insufficient coverage by the airborne scanner, and the multiple scattering of the laser pulse in vegetation. It is found that for three different types of vegetation (corn, orchard, rainforest), and in three usual scanning configurations, the satellite signal can be derived with good precision. However, multiple scattering in the vegetation is shown to induce errors of up to 30% of the total backscattered signal depending on the wavelength.</abstract><pub>IEEE</pub><doi>10.1109/LGRS.2013.2273801</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2014-02, Vol.11 (2), p.534-538 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_6573338 |
source | IEEE Electronic Library (IEL) |
subjects | Airborne laser scanner Atmospheric modeling fullwaveform lidar Laser modes Laser radar multiple scattering optical radar satellite lidar Satellites Scattering Sensors vegetation Vegetation mapping |
title | Simulating Space Lidar Waveforms From Smaller-Footprint Airborne Laser Scanner Data for Vegetation Observation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20Space%20Lidar%20Waveforms%20From%20Smaller-Footprint%20Airborne%20Laser%20Scanner%20Data%20for%20Vegetation%20Observation&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ristorcelli,%20Thomas&rft.date=2014-02-01&rft.volume=11&rft.issue=2&rft.spage=534&rft.epage=538&rft.pages=534-538&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2013.2273801&rft_dat=%3Ccrossref_RIE%3E10_1109_LGRS_2013_2273801%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6573338&rfr_iscdi=true |