Model Reduction and Clusterization of Large-Scale Bidirectional Networks

This paper proposes two model reduction methods for large-scale bidirectional networks that fully utilize a network structure transformation implemented as positive tridiagonalization. First, we present a Krylov-based model reduction method that guarantees a specified error precision in terms of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2014-01, Vol.59 (1), p.48-63
Hauptverfasser: Ishizaki, Takayuki, Kashima, Kenji, Imura, Jun-ichi, Aihara, Kazuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 48
container_title IEEE transactions on automatic control
container_volume 59
creator Ishizaki, Takayuki
Kashima, Kenji
Imura, Jun-ichi
Aihara, Kazuyuki
description This paper proposes two model reduction methods for large-scale bidirectional networks that fully utilize a network structure transformation implemented as positive tridiagonalization. First, we present a Krylov-based model reduction method that guarantees a specified error precision in terms of the H∞-norm. Positive tridiagonalization allows us to derive an approximation error bound for the input-to-state model reduction without computationally expensive operations such as matrix factorization. Second, we propose a novel model reduction method that preserves network topology among clusters, i.e., node sets. In this approach, we introduce the notion of cluster uncontrollability based on positive tridiagonalization, and then derive its theoretical relation to the approximation error. This error analysis enables us to construct clusters that can be aggregated with a small approximation error. The efficiency of both methods is verified through numerical examples, including a large-scale complex network.
doi_str_mv 10.1109/TAC.2013.2275891
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6572847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6572847</ieee_id><sourcerecordid>10_1109_TAC_2013_2275891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-71546cfac0a8f7fa6cc4ea8d42745cbbd69481cab8f3afa69a0f36b224ebe23f3</originalsourceid><addsrcrecordid>eNo9kMtKxDAUhoMoWEf3gpu-QGvuSZdj0RmhKui4LqfpiVTrVJIOok9v54Krw3_-y-Ij5JLRnDFaXK_mZc4pEznnRtmCHZGEKWUzrrg4JgmlzGYFt_qUnMX4PkktJUvI8mFosU-fsd24sRvWKazbtOw3ccTQ_cLuNfi0gvCG2YuDHtObru0C7tLQp484fg_hI56TEw99xIvDnZHXu9tVucyqp8V9Oa8yJ6gZM8OU1M6Do2C98aCdkwi2ldxI5Zqm1YW0zEFjvYDJLoB6oRvOJTbIhRczQve7LgwxBvT1V-g-IfzUjNZbEvVEot6SqA8kpsrVvtIh4n9cK8OtNOIPeh5bbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model Reduction and Clusterization of Large-Scale Bidirectional Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Ishizaki, Takayuki ; Kashima, Kenji ; Imura, Jun-ichi ; Aihara, Kazuyuki</creator><creatorcontrib>Ishizaki, Takayuki ; Kashima, Kenji ; Imura, Jun-ichi ; Aihara, Kazuyuki</creatorcontrib><description>This paper proposes two model reduction methods for large-scale bidirectional networks that fully utilize a network structure transformation implemented as positive tridiagonalization. First, we present a Krylov-based model reduction method that guarantees a specified error precision in terms of the H∞-norm. Positive tridiagonalization allows us to derive an approximation error bound for the input-to-state model reduction without computationally expensive operations such as matrix factorization. Second, we propose a novel model reduction method that preserves network topology among clusters, i.e., node sets. In this approach, we introduce the notion of cluster uncontrollability based on positive tridiagonalization, and then derive its theoretical relation to the approximation error. This error analysis enables us to construct clusters that can be aggregated with a small approximation error. The efficiency of both methods is verified through numerical examples, including a large-scale complex network.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2013.2275891</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation error ; Finite wordlength effects ; Krylov projection method ; model reduction ; network clustering ; network systems ; Network topology ; Reduced order systems ; Symmetric matrices ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2014-01, Vol.59 (1), p.48-63</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-71546cfac0a8f7fa6cc4ea8d42745cbbd69481cab8f3afa69a0f36b224ebe23f3</citedby><cites>FETCH-LOGICAL-c307t-71546cfac0a8f7fa6cc4ea8d42745cbbd69481cab8f3afa69a0f36b224ebe23f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6572847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6572847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishizaki, Takayuki</creatorcontrib><creatorcontrib>Kashima, Kenji</creatorcontrib><creatorcontrib>Imura, Jun-ichi</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><title>Model Reduction and Clusterization of Large-Scale Bidirectional Networks</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper proposes two model reduction methods for large-scale bidirectional networks that fully utilize a network structure transformation implemented as positive tridiagonalization. First, we present a Krylov-based model reduction method that guarantees a specified error precision in terms of the H∞-norm. Positive tridiagonalization allows us to derive an approximation error bound for the input-to-state model reduction without computationally expensive operations such as matrix factorization. Second, we propose a novel model reduction method that preserves network topology among clusters, i.e., node sets. In this approach, we introduce the notion of cluster uncontrollability based on positive tridiagonalization, and then derive its theoretical relation to the approximation error. This error analysis enables us to construct clusters that can be aggregated with a small approximation error. The efficiency of both methods is verified through numerical examples, including a large-scale complex network.</description><subject>Approximation error</subject><subject>Finite wordlength effects</subject><subject>Krylov projection method</subject><subject>model reduction</subject><subject>network clustering</subject><subject>network systems</subject><subject>Network topology</subject><subject>Reduced order systems</subject><subject>Symmetric matrices</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKxDAUhoMoWEf3gpu-QGvuSZdj0RmhKui4LqfpiVTrVJIOok9v54Krw3_-y-Ij5JLRnDFaXK_mZc4pEznnRtmCHZGEKWUzrrg4JgmlzGYFt_qUnMX4PkktJUvI8mFosU-fsd24sRvWKazbtOw3ccTQ_cLuNfi0gvCG2YuDHtObru0C7tLQp484fg_hI56TEw99xIvDnZHXu9tVucyqp8V9Oa8yJ6gZM8OU1M6Do2C98aCdkwi2ldxI5Zqm1YW0zEFjvYDJLoB6oRvOJTbIhRczQve7LgwxBvT1V-g-IfzUjNZbEvVEot6SqA8kpsrVvtIh4n9cK8OtNOIPeh5bbw</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Ishizaki, Takayuki</creator><creator>Kashima, Kenji</creator><creator>Imura, Jun-ichi</creator><creator>Aihara, Kazuyuki</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201401</creationdate><title>Model Reduction and Clusterization of Large-Scale Bidirectional Networks</title><author>Ishizaki, Takayuki ; Kashima, Kenji ; Imura, Jun-ichi ; Aihara, Kazuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-71546cfac0a8f7fa6cc4ea8d42745cbbd69481cab8f3afa69a0f36b224ebe23f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation error</topic><topic>Finite wordlength effects</topic><topic>Krylov projection method</topic><topic>model reduction</topic><topic>network clustering</topic><topic>network systems</topic><topic>Network topology</topic><topic>Reduced order systems</topic><topic>Symmetric matrices</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishizaki, Takayuki</creatorcontrib><creatorcontrib>Kashima, Kenji</creatorcontrib><creatorcontrib>Imura, Jun-ichi</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishizaki, Takayuki</au><au>Kashima, Kenji</au><au>Imura, Jun-ichi</au><au>Aihara, Kazuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Reduction and Clusterization of Large-Scale Bidirectional Networks</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2014-01</date><risdate>2014</risdate><volume>59</volume><issue>1</issue><spage>48</spage><epage>63</epage><pages>48-63</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper proposes two model reduction methods for large-scale bidirectional networks that fully utilize a network structure transformation implemented as positive tridiagonalization. First, we present a Krylov-based model reduction method that guarantees a specified error precision in terms of the H∞-norm. Positive tridiagonalization allows us to derive an approximation error bound for the input-to-state model reduction without computationally expensive operations such as matrix factorization. Second, we propose a novel model reduction method that preserves network topology among clusters, i.e., node sets. In this approach, we introduce the notion of cluster uncontrollability based on positive tridiagonalization, and then derive its theoretical relation to the approximation error. This error analysis enables us to construct clusters that can be aggregated with a small approximation error. The efficiency of both methods is verified through numerical examples, including a large-scale complex network.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2013.2275891</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2014-01, Vol.59 (1), p.48-63
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_6572847
source IEEE Electronic Library (IEL)
subjects Approximation error
Finite wordlength effects
Krylov projection method
model reduction
network clustering
network systems
Network topology
Reduced order systems
Symmetric matrices
Vectors
title Model Reduction and Clusterization of Large-Scale Bidirectional Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Reduction%20and%20Clusterization%20of%20Large-Scale%20Bidirectional%20Networks&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ishizaki,%20Takayuki&rft.date=2014-01&rft.volume=59&rft.issue=1&rft.spage=48&rft.epage=63&rft.pages=48-63&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2013.2275891&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2013_2275891%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6572847&rfr_iscdi=true