Low-power multi-processor system architecture design for universal biomedical signal processing
As the study of the wireless body area sensor network (BASN) keeps growing, corresponding applications such as bio-signal processing for personal healthcare are gaining more attention. To realize a miniature and multi-functional system for biomedical applications, the design of on-sensor mircoproces...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 860 |
---|---|
container_issue | |
container_start_page | 857 |
container_title | |
container_volume | |
creator | Li-Fang Cheng Tung-Chien Chen Liang-Gee Chen |
description | As the study of the wireless body area sensor network (BASN) keeps growing, corresponding applications such as bio-signal processing for personal healthcare are gaining more attention. To realize a miniature and multi-functional system for biomedical applications, the design of on-sensor mircoprocessor is considered to be a solution. However, how to balance the power consumption and system scalability remains a challenge. In this work, we try to involve the concept of multi-core computing systems into biomedical applications. A fully programmable system architecture based on the proposed two-way pipeline processing unit (two-way PPU) is introduced and evaluated. The proposed two-way PPU is a computing unit that adopts the general purpose processor (GPP) to provide high system programmability, and is easy to be cascaded for system extension. According to the implementation results, the proposed architecture can save up to 91% of energy compared with conventional multi-core architecture in a four-core biomedical processing microsystem. |
doi_str_mv | 10.1109/ISCAS.2013.6571982 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6571982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6571982</ieee_id><sourcerecordid>6571982</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cecce28bc8fc2299dcee15a4a7fad42ce89a929e782ff0101d8c95cb8d663f073</originalsourceid><addsrcrecordid>eNpVkMtqAjEUhtMbVKwv0G7mBWJzMpPbUqQXQejCdi3xzIlNcRxJZiq-fafUTVffDx98i5-xexBTAOEeF6v5bDWVAsqpVgaclRds4oyFSptSGQ36ko0kKMtBSXX1zwl3zUZCGuBVKeQtm-T8JYQYuhqkGbH1sj3yQ3ukVDT9rov8kFqknNtU5FPuqCl8ws_YEXZ9oqKmHLf7Igy638dvStnvik1sG6ojDvPXDjhH4n57x26C32WanDlmH89P7_NXvnx7WcxnSx7BqI4jIZK0G7QBpXSuRiJQvvIm-LqSSNZ5Jx0ZK0MQIKC26BRubK11GYQpx-zhrxuJaH1IsfHptD7fVf4Ab4ddMg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low-power multi-processor system architecture design for universal biomedical signal processing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li-Fang Cheng ; Tung-Chien Chen ; Liang-Gee Chen</creator><creatorcontrib>Li-Fang Cheng ; Tung-Chien Chen ; Liang-Gee Chen</creatorcontrib><description>As the study of the wireless body area sensor network (BASN) keeps growing, corresponding applications such as bio-signal processing for personal healthcare are gaining more attention. To realize a miniature and multi-functional system for biomedical applications, the design of on-sensor mircoprocessor is considered to be a solution. However, how to balance the power consumption and system scalability remains a challenge. In this work, we try to involve the concept of multi-core computing systems into biomedical applications. A fully programmable system architecture based on the proposed two-way pipeline processing unit (two-way PPU) is introduced and evaluated. The proposed two-way PPU is a computing unit that adopts the general purpose processor (GPP) to provide high system programmability, and is easy to be cascaded for system extension. According to the implementation results, the proposed architecture can save up to 91% of energy compared with conventional multi-core architecture in a four-core biomedical processing microsystem.</description><identifier>ISSN: 0271-4302</identifier><identifier>ISBN: 9781467357609</identifier><identifier>ISBN: 146735760X</identifier><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 9781467357616</identifier><identifier>EISBN: 1467357618</identifier><identifier>EISBN: 9781467357623</identifier><identifier>EISBN: 1467357626</identifier><identifier>DOI: 10.1109/ISCAS.2013.6571982</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application specific integrated circuits ; Electrocardiography ; Multicore processing ; Pipeline processing ; Power demand ; Switches</subject><ispartof>2013 IEEE International Symposium on Circuits and Systems (ISCAS), 2013, p.857-860</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6571982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6571982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li-Fang Cheng</creatorcontrib><creatorcontrib>Tung-Chien Chen</creatorcontrib><creatorcontrib>Liang-Gee Chen</creatorcontrib><title>Low-power multi-processor system architecture design for universal biomedical signal processing</title><title>2013 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>As the study of the wireless body area sensor network (BASN) keeps growing, corresponding applications such as bio-signal processing for personal healthcare are gaining more attention. To realize a miniature and multi-functional system for biomedical applications, the design of on-sensor mircoprocessor is considered to be a solution. However, how to balance the power consumption and system scalability remains a challenge. In this work, we try to involve the concept of multi-core computing systems into biomedical applications. A fully programmable system architecture based on the proposed two-way pipeline processing unit (two-way PPU) is introduced and evaluated. The proposed two-way PPU is a computing unit that adopts the general purpose processor (GPP) to provide high system programmability, and is easy to be cascaded for system extension. According to the implementation results, the proposed architecture can save up to 91% of energy compared with conventional multi-core architecture in a four-core biomedical processing microsystem.</description><subject>Application specific integrated circuits</subject><subject>Electrocardiography</subject><subject>Multicore processing</subject><subject>Pipeline processing</subject><subject>Power demand</subject><subject>Switches</subject><issn>0271-4302</issn><issn>2158-1525</issn><isbn>9781467357609</isbn><isbn>146735760X</isbn><isbn>9781467357616</isbn><isbn>1467357618</isbn><isbn>9781467357623</isbn><isbn>1467357626</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtqAjEUhtMbVKwv0G7mBWJzMpPbUqQXQejCdi3xzIlNcRxJZiq-fafUTVffDx98i5-xexBTAOEeF6v5bDWVAsqpVgaclRds4oyFSptSGQ36ko0kKMtBSXX1zwl3zUZCGuBVKeQtm-T8JYQYuhqkGbH1sj3yQ3ukVDT9rov8kFqknNtU5FPuqCl8ws_YEXZ9oqKmHLf7Igy638dvStnvik1sG6ojDvPXDjhH4n57x26C32WanDlmH89P7_NXvnx7WcxnSx7BqI4jIZK0G7QBpXSuRiJQvvIm-LqSSNZ5Jx0ZK0MQIKC26BRubK11GYQpx-zhrxuJaH1IsfHptD7fVf4Ab4ddMg</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Li-Fang Cheng</creator><creator>Tung-Chien Chen</creator><creator>Liang-Gee Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201305</creationdate><title>Low-power multi-processor system architecture design for universal biomedical signal processing</title><author>Li-Fang Cheng ; Tung-Chien Chen ; Liang-Gee Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cecce28bc8fc2299dcee15a4a7fad42ce89a929e782ff0101d8c95cb8d663f073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Application specific integrated circuits</topic><topic>Electrocardiography</topic><topic>Multicore processing</topic><topic>Pipeline processing</topic><topic>Power demand</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Li-Fang Cheng</creatorcontrib><creatorcontrib>Tung-Chien Chen</creatorcontrib><creatorcontrib>Liang-Gee Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li-Fang Cheng</au><au>Tung-Chien Chen</au><au>Liang-Gee Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low-power multi-processor system architecture design for universal biomedical signal processing</atitle><btitle>2013 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2013-05</date><risdate>2013</risdate><spage>857</spage><epage>860</epage><pages>857-860</pages><issn>0271-4302</issn><eissn>2158-1525</eissn><isbn>9781467357609</isbn><isbn>146735760X</isbn><eisbn>9781467357616</eisbn><eisbn>1467357618</eisbn><eisbn>9781467357623</eisbn><eisbn>1467357626</eisbn><abstract>As the study of the wireless body area sensor network (BASN) keeps growing, corresponding applications such as bio-signal processing for personal healthcare are gaining more attention. To realize a miniature and multi-functional system for biomedical applications, the design of on-sensor mircoprocessor is considered to be a solution. However, how to balance the power consumption and system scalability remains a challenge. In this work, we try to involve the concept of multi-core computing systems into biomedical applications. A fully programmable system architecture based on the proposed two-way pipeline processing unit (two-way PPU) is introduced and evaluated. The proposed two-way PPU is a computing unit that adopts the general purpose processor (GPP) to provide high system programmability, and is easy to be cascaded for system extension. According to the implementation results, the proposed architecture can save up to 91% of energy compared with conventional multi-core architecture in a four-core biomedical processing microsystem.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.2013.6571982</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0271-4302 |
ispartof | 2013 IEEE International Symposium on Circuits and Systems (ISCAS), 2013, p.857-860 |
issn | 0271-4302 2158-1525 |
language | eng |
recordid | cdi_ieee_primary_6571982 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application specific integrated circuits Electrocardiography Multicore processing Pipeline processing Power demand Switches |
title | Low-power multi-processor system architecture design for universal biomedical signal processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low-power%20multi-processor%20system%20architecture%20design%20for%20universal%20biomedical%20signal%20processing&rft.btitle=2013%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Li-Fang%20Cheng&rft.date=2013-05&rft.spage=857&rft.epage=860&rft.pages=857-860&rft.issn=0271-4302&rft.eissn=2158-1525&rft.isbn=9781467357609&rft.isbn_list=146735760X&rft_id=info:doi/10.1109/ISCAS.2013.6571982&rft_dat=%3Cieee_6IE%3E6571982%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467357616&rft.eisbn_list=1467357618&rft.eisbn_list=9781467357623&rft.eisbn_list=1467357626&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6571982&rfr_iscdi=true |