Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN

Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahmad, Fadzil, Isa, Nor Ashidi Mat, Noor, Mohd Halim Mohd, Hussain, Zakaria
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 9
container_title
container_volume
creator Ahmad, Fadzil
Isa, Nor Ashidi Mat
Noor, Mohd Halim Mohd
Hussain, Zakaria
description Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error and cause unnecessary burden to radiologists. This paper introduces an automatic breast cancer diagnosis technique using a genetic algorithm (GA) for simultaneous feature selection and parameter optimization of artificial neural networks (ANN). The performances of the proposed algorithm employing three different variations of the backpropagation technique for the fine tuning of the weight of ANN are compared. The algorithm is called the GAANN_XX where the XX refers to the back-propagation training variation used. The proposed algorithms called GAANN_RP produces the best and average, 99.43% and 98.29% correct classification respectively on the Wiscinson Breast Cancer Dataset.
doi_str_mv 10.1109/CICSYN.2013.67
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6571334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6571334</ieee_id><sourcerecordid>6571334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-867c89fa18e4199f1a8e9663995d5d23d22f32a5c2b68526644b884e2d6010b3</originalsourceid><addsrcrecordid>eNotjD1PhEAUANcYE81Ja2OzfwB8-_bzlYh6R3LBwrOwuiywkDWIhqW5f69Rq8kUM4zdCCiEALqr6urlrSkQhCyMPWMZWQfWkNag0J3_ulCWCLSz6pJlKb0DwE9rENQVs_W8hmmKY5hXfr8En1Ze-bkLC3-Ifpw_U0z8NcV55LtTu8Seb8u8bJprdjH4KYXsnxt2eHo8VLt8_7ytq3Kfd4iw5s7YztHghQtKEA3Cu0DGSCLd6x5ljzhI9LrD1jiNxijVOqcC9gYEtHLDbv-2MYRw_Frih19OR6OtkFLJb9EKRMs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahmad, Fadzil ; Isa, Nor Ashidi Mat ; Noor, Mohd Halim Mohd ; Hussain, Zakaria</creator><creatorcontrib>Ahmad, Fadzil ; Isa, Nor Ashidi Mat ; Noor, Mohd Halim Mohd ; Hussain, Zakaria</creatorcontrib><description>Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error and cause unnecessary burden to radiologists. This paper introduces an automatic breast cancer diagnosis technique using a genetic algorithm (GA) for simultaneous feature selection and parameter optimization of artificial neural networks (ANN). The performances of the proposed algorithm employing three different variations of the backpropagation technique for the fine tuning of the weight of ANN are compared. The algorithm is called the GAANN_XX where the XX refers to the back-propagation training variation used. The proposed algorithms called GAANN_RP produces the best and average, 99.43% and 98.29% correct classification respectively on the Wiscinson Breast Cancer Dataset.</description><identifier>ISBN: 9781479905874</identifier><identifier>ISBN: 1479905879</identifier><identifier>EISBN: 9780769550428</identifier><identifier>EISBN: 0769550428</identifier><identifier>DOI: 10.1109/CICSYN.2013.67</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial Neural Network ; Artificial neural networks ; Back-propagation ; Breast cancer ; Classification Accuracy ; Classification algorithms ; Feature Selection ; Genetic Algorithm ; Sociology ; Statistics ; Training</subject><ispartof>2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, 2013, p.9-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-867c89fa18e4199f1a8e9663995d5d23d22f32a5c2b68526644b884e2d6010b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6571334$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6571334$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmad, Fadzil</creatorcontrib><creatorcontrib>Isa, Nor Ashidi Mat</creatorcontrib><creatorcontrib>Noor, Mohd Halim Mohd</creatorcontrib><creatorcontrib>Hussain, Zakaria</creatorcontrib><title>Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN</title><title>2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks</title><addtitle>cicsyn</addtitle><description>Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error and cause unnecessary burden to radiologists. This paper introduces an automatic breast cancer diagnosis technique using a genetic algorithm (GA) for simultaneous feature selection and parameter optimization of artificial neural networks (ANN). The performances of the proposed algorithm employing three different variations of the backpropagation technique for the fine tuning of the weight of ANN are compared. The algorithm is called the GAANN_XX where the XX refers to the back-propagation training variation used. The proposed algorithms called GAANN_RP produces the best and average, 99.43% and 98.29% correct classification respectively on the Wiscinson Breast Cancer Dataset.</description><subject>Accuracy</subject><subject>Artificial Neural Network</subject><subject>Artificial neural networks</subject><subject>Back-propagation</subject><subject>Breast cancer</subject><subject>Classification Accuracy</subject><subject>Classification algorithms</subject><subject>Feature Selection</subject><subject>Genetic Algorithm</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Training</subject><isbn>9781479905874</isbn><isbn>1479905879</isbn><isbn>9780769550428</isbn><isbn>0769550428</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjD1PhEAUANcYE81Ja2OzfwB8-_bzlYh6R3LBwrOwuiywkDWIhqW5f69Rq8kUM4zdCCiEALqr6urlrSkQhCyMPWMZWQfWkNag0J3_ulCWCLSz6pJlKb0DwE9rENQVs_W8hmmKY5hXfr8En1Ze-bkLC3-Ifpw_U0z8NcV55LtTu8Seb8u8bJprdjH4KYXsnxt2eHo8VLt8_7ytq3Kfd4iw5s7YztHghQtKEA3Cu0DGSCLd6x5ljzhI9LrD1jiNxijVOqcC9gYEtHLDbv-2MYRw_Frih19OR6OtkFLJb9EKRMs</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Ahmad, Fadzil</creator><creator>Isa, Nor Ashidi Mat</creator><creator>Noor, Mohd Halim Mohd</creator><creator>Hussain, Zakaria</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN</title><author>Ahmad, Fadzil ; Isa, Nor Ashidi Mat ; Noor, Mohd Halim Mohd ; Hussain, Zakaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-867c89fa18e4199f1a8e9663995d5d23d22f32a5c2b68526644b884e2d6010b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Artificial Neural Network</topic><topic>Artificial neural networks</topic><topic>Back-propagation</topic><topic>Breast cancer</topic><topic>Classification Accuracy</topic><topic>Classification algorithms</topic><topic>Feature Selection</topic><topic>Genetic Algorithm</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Fadzil</creatorcontrib><creatorcontrib>Isa, Nor Ashidi Mat</creatorcontrib><creatorcontrib>Noor, Mohd Halim Mohd</creatorcontrib><creatorcontrib>Hussain, Zakaria</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmad, Fadzil</au><au>Isa, Nor Ashidi Mat</au><au>Noor, Mohd Halim Mohd</au><au>Hussain, Zakaria</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN</atitle><btitle>2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks</btitle><stitle>cicsyn</stitle><date>2013-06</date><risdate>2013</risdate><spage>9</spage><epage>12</epage><pages>9-12</pages><isbn>9781479905874</isbn><isbn>1479905879</isbn><eisbn>9780769550428</eisbn><eisbn>0769550428</eisbn><coden>IEEPAD</coden><abstract>Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error and cause unnecessary burden to radiologists. This paper introduces an automatic breast cancer diagnosis technique using a genetic algorithm (GA) for simultaneous feature selection and parameter optimization of artificial neural networks (ANN). The performances of the proposed algorithm employing three different variations of the backpropagation technique for the fine tuning of the weight of ANN are compared. The algorithm is called the GAANN_XX where the XX refers to the back-propagation training variation used. The proposed algorithms called GAANN_RP produces the best and average, 99.43% and 98.29% correct classification respectively on the Wiscinson Breast Cancer Dataset.</abstract><pub>IEEE</pub><doi>10.1109/CICSYN.2013.67</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781479905874
ispartof 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, 2013, p.9-12
issn
language eng
recordid cdi_ieee_primary_6571334
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Artificial Neural Network
Artificial neural networks
Back-propagation
Breast cancer
Classification Accuracy
Classification algorithms
Feature Selection
Genetic Algorithm
Sociology
Statistics
Training
title Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20Breast%20Cancer%20Diagnosis%20Using%20Hybrid%20GA-ANN&rft.btitle=2013%20Fifth%20International%20Conference%20on%20Computational%20Intelligence,%20Communication%20Systems%20and%20Networks&rft.au=Ahmad,%20Fadzil&rft.date=2013-06&rft.spage=9&rft.epage=12&rft.pages=9-12&rft.isbn=9781479905874&rft.isbn_list=1479905879&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CICSYN.2013.67&rft_dat=%3Cieee_6IE%3E6571334%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769550428&rft.eisbn_list=0769550428&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6571334&rfr_iscdi=true