Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN
Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 9 |
container_title | |
container_volume | |
creator | Ahmad, Fadzil Isa, Nor Ashidi Mat Noor, Mohd Halim Mohd Hussain, Zakaria |
description | Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error and cause unnecessary burden to radiologists. This paper introduces an automatic breast cancer diagnosis technique using a genetic algorithm (GA) for simultaneous feature selection and parameter optimization of artificial neural networks (ANN). The performances of the proposed algorithm employing three different variations of the backpropagation technique for the fine tuning of the weight of ANN are compared. The algorithm is called the GAANN_XX where the XX refers to the back-propagation training variation used. The proposed algorithms called GAANN_RP produces the best and average, 99.43% and 98.29% correct classification respectively on the Wiscinson Breast Cancer Dataset. |
doi_str_mv | 10.1109/CICSYN.2013.67 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6571334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6571334</ieee_id><sourcerecordid>6571334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-867c89fa18e4199f1a8e9663995d5d23d22f32a5c2b68526644b884e2d6010b3</originalsourceid><addsrcrecordid>eNotjD1PhEAUANcYE81Ja2OzfwB8-_bzlYh6R3LBwrOwuiywkDWIhqW5f69Rq8kUM4zdCCiEALqr6urlrSkQhCyMPWMZWQfWkNag0J3_ulCWCLSz6pJlKb0DwE9rENQVs_W8hmmKY5hXfr8En1Ze-bkLC3-Ifpw_U0z8NcV55LtTu8Seb8u8bJprdjH4KYXsnxt2eHo8VLt8_7ytq3Kfd4iw5s7YztHghQtKEA3Cu0DGSCLd6x5ljzhI9LrD1jiNxijVOqcC9gYEtHLDbv-2MYRw_Frih19OR6OtkFLJb9EKRMs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahmad, Fadzil ; Isa, Nor Ashidi Mat ; Noor, Mohd Halim Mohd ; Hussain, Zakaria</creator><creatorcontrib>Ahmad, Fadzil ; Isa, Nor Ashidi Mat ; Noor, Mohd Halim Mohd ; Hussain, Zakaria</creatorcontrib><description>Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error and cause unnecessary burden to radiologists. This paper introduces an automatic breast cancer diagnosis technique using a genetic algorithm (GA) for simultaneous feature selection and parameter optimization of artificial neural networks (ANN). The performances of the proposed algorithm employing three different variations of the backpropagation technique for the fine tuning of the weight of ANN are compared. The algorithm is called the GAANN_XX where the XX refers to the back-propagation training variation used. The proposed algorithms called GAANN_RP produces the best and average, 99.43% and 98.29% correct classification respectively on the Wiscinson Breast Cancer Dataset.</description><identifier>ISBN: 9781479905874</identifier><identifier>ISBN: 1479905879</identifier><identifier>EISBN: 9780769550428</identifier><identifier>EISBN: 0769550428</identifier><identifier>DOI: 10.1109/CICSYN.2013.67</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial Neural Network ; Artificial neural networks ; Back-propagation ; Breast cancer ; Classification Accuracy ; Classification algorithms ; Feature Selection ; Genetic Algorithm ; Sociology ; Statistics ; Training</subject><ispartof>2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, 2013, p.9-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-867c89fa18e4199f1a8e9663995d5d23d22f32a5c2b68526644b884e2d6010b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6571334$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6571334$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmad, Fadzil</creatorcontrib><creatorcontrib>Isa, Nor Ashidi Mat</creatorcontrib><creatorcontrib>Noor, Mohd Halim Mohd</creatorcontrib><creatorcontrib>Hussain, Zakaria</creatorcontrib><title>Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN</title><title>2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks</title><addtitle>cicsyn</addtitle><description>Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error and cause unnecessary burden to radiologists. This paper introduces an automatic breast cancer diagnosis technique using a genetic algorithm (GA) for simultaneous feature selection and parameter optimization of artificial neural networks (ANN). The performances of the proposed algorithm employing three different variations of the backpropagation technique for the fine tuning of the weight of ANN are compared. The algorithm is called the GAANN_XX where the XX refers to the back-propagation training variation used. The proposed algorithms called GAANN_RP produces the best and average, 99.43% and 98.29% correct classification respectively on the Wiscinson Breast Cancer Dataset.</description><subject>Accuracy</subject><subject>Artificial Neural Network</subject><subject>Artificial neural networks</subject><subject>Back-propagation</subject><subject>Breast cancer</subject><subject>Classification Accuracy</subject><subject>Classification algorithms</subject><subject>Feature Selection</subject><subject>Genetic Algorithm</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Training</subject><isbn>9781479905874</isbn><isbn>1479905879</isbn><isbn>9780769550428</isbn><isbn>0769550428</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjD1PhEAUANcYE81Ja2OzfwB8-_bzlYh6R3LBwrOwuiywkDWIhqW5f69Rq8kUM4zdCCiEALqr6urlrSkQhCyMPWMZWQfWkNag0J3_ulCWCLSz6pJlKb0DwE9rENQVs_W8hmmKY5hXfr8En1Ze-bkLC3-Ifpw_U0z8NcV55LtTu8Seb8u8bJprdjH4KYXsnxt2eHo8VLt8_7ytq3Kfd4iw5s7YztHghQtKEA3Cu0DGSCLd6x5ljzhI9LrD1jiNxijVOqcC9gYEtHLDbv-2MYRw_Frih19OR6OtkFLJb9EKRMs</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Ahmad, Fadzil</creator><creator>Isa, Nor Ashidi Mat</creator><creator>Noor, Mohd Halim Mohd</creator><creator>Hussain, Zakaria</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN</title><author>Ahmad, Fadzil ; Isa, Nor Ashidi Mat ; Noor, Mohd Halim Mohd ; Hussain, Zakaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-867c89fa18e4199f1a8e9663995d5d23d22f32a5c2b68526644b884e2d6010b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Artificial Neural Network</topic><topic>Artificial neural networks</topic><topic>Back-propagation</topic><topic>Breast cancer</topic><topic>Classification Accuracy</topic><topic>Classification algorithms</topic><topic>Feature Selection</topic><topic>Genetic Algorithm</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Fadzil</creatorcontrib><creatorcontrib>Isa, Nor Ashidi Mat</creatorcontrib><creatorcontrib>Noor, Mohd Halim Mohd</creatorcontrib><creatorcontrib>Hussain, Zakaria</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmad, Fadzil</au><au>Isa, Nor Ashidi Mat</au><au>Noor, Mohd Halim Mohd</au><au>Hussain, Zakaria</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN</atitle><btitle>2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks</btitle><stitle>cicsyn</stitle><date>2013-06</date><risdate>2013</risdate><spage>9</spage><epage>12</epage><pages>9-12</pages><isbn>9781479905874</isbn><isbn>1479905879</isbn><eisbn>9780769550428</eisbn><eisbn>0769550428</eisbn><coden>IEEPAD</coden><abstract>Breast cancer prevails as one of the infamous deathly diseases among women worldwide. Early detection and treatment of breast cancer can increase the survival rate of patients. Presently, the method of diagnosis depends on the human experiences. The method is time-consuming, subjected to human error and cause unnecessary burden to radiologists. This paper introduces an automatic breast cancer diagnosis technique using a genetic algorithm (GA) for simultaneous feature selection and parameter optimization of artificial neural networks (ANN). The performances of the proposed algorithm employing three different variations of the backpropagation technique for the fine tuning of the weight of ANN are compared. The algorithm is called the GAANN_XX where the XX refers to the back-propagation training variation used. The proposed algorithms called GAANN_RP produces the best and average, 99.43% and 98.29% correct classification respectively on the Wiscinson Breast Cancer Dataset.</abstract><pub>IEEE</pub><doi>10.1109/CICSYN.2013.67</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781479905874 |
ispartof | 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, 2013, p.9-12 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6571334 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Artificial Neural Network Artificial neural networks Back-propagation Breast cancer Classification Accuracy Classification algorithms Feature Selection Genetic Algorithm Sociology Statistics Training |
title | Intelligent Breast Cancer Diagnosis Using Hybrid GA-ANN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20Breast%20Cancer%20Diagnosis%20Using%20Hybrid%20GA-ANN&rft.btitle=2013%20Fifth%20International%20Conference%20on%20Computational%20Intelligence,%20Communication%20Systems%20and%20Networks&rft.au=Ahmad,%20Fadzil&rft.date=2013-06&rft.spage=9&rft.epage=12&rft.pages=9-12&rft.isbn=9781479905874&rft.isbn_list=1479905879&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CICSYN.2013.67&rft_dat=%3Cieee_6IE%3E6571334%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769550428&rft.eisbn_list=0769550428&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6571334&rfr_iscdi=true |