An agent-based Knowledge Discovery from Databases applied in healthcare domain
Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module)...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | |
container_start_page | 176 |
container_title | |
container_volume | |
creator | Benomrane, Souad Ben Ayed, Mounir Alimi, Adel M. |
description | Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module). The objective of this study is to propose an approach which assimilates every module to an agent. These agents have to communicate and cooperate to help the user to make the most appropriate decision. Thus, The process of KDD can be likened to a Multi-Agent System (MAS). To validate our approach, we have applied a process of KDD for the fight against nosocomial infections within an intensive care unit (ICU) of a University hospital. On a technical level, we have developed a software tool for decision-making support in Java/XML through the agent platform "Madkit". |
doi_str_mv | 10.1109/ICAdLT.2013.6568455 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6568455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6568455</ieee_id><sourcerecordid>6568455</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-736b2fd67979de801eae464ae0e6f1fdb27690fa6ae187059c6f481f748d32583</originalsourceid><addsrcrecordid>eNo1kNtKw0AYhFdEUGueoDf7Aom72fNlaT1h0Jt6Xf5k_21XciIblL69FevVMPDNMAwhS84Kzpm7f1mvfLUtSsZFoZW2UqkLcsulcY4JLspLkjlj_73U1yRL6ZMxdkprbsUNeVv1FPbYz3kNCT197YfvFv0e6SamZvjC6UjDNHR0AzP8IonCOLbxhMaeHhDa-dDAhNQPHcT-jlwFaBNmZ12Qj8eH7fo5r96fTmOrPHKj5twIXZfBa-OM82gZR0CpJSBDHXjwdWm0YwE0ILeGKdfoIC0PRlovSmXFgiz_eiMi7sYpdjAdd-cLxA8zEk_c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An agent-based Knowledge Discovery from Databases applied in healthcare domain</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Benomrane, Souad ; Ben Ayed, Mounir ; Alimi, Adel M.</creator><creatorcontrib>Benomrane, Souad ; Ben Ayed, Mounir ; Alimi, Adel M.</creatorcontrib><description>Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module). The objective of this study is to propose an approach which assimilates every module to an agent. These agents have to communicate and cooperate to help the user to make the most appropriate decision. Thus, The process of KDD can be likened to a Multi-Agent System (MAS). To validate our approach, we have applied a process of KDD for the fight against nosocomial infections within an intensive care unit (ICU) of a University hospital. On a technical level, we have developed a software tool for decision-making support in Java/XML through the agent platform "Madkit".</description><identifier>ISBN: 9781479903146</identifier><identifier>ISBN: 1479903140</identifier><identifier>EISBN: 1479903132</identifier><identifier>EISBN: 9781479903122</identifier><identifier>EISBN: 1479903124</identifier><identifier>EISBN: 9781479903139</identifier><identifier>DOI: 10.1109/ICAdLT.2013.6568455</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Decision support systems ; Knowledge discovery ; Knowledge Discovery from Databases ; Medical services ; Multi Agent System ; Multi-agent systems ; Nosocomial Infection ; Organizations ; Prediction</subject><ispartof>2013 International Conference on Advanced Logistics and Transport, 2013, p.176-180</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6568455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6568455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benomrane, Souad</creatorcontrib><creatorcontrib>Ben Ayed, Mounir</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><title>An agent-based Knowledge Discovery from Databases applied in healthcare domain</title><title>2013 International Conference on Advanced Logistics and Transport</title><addtitle>ICAdLT</addtitle><description>Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module). The objective of this study is to propose an approach which assimilates every module to an agent. These agents have to communicate and cooperate to help the user to make the most appropriate decision. Thus, The process of KDD can be likened to a Multi-Agent System (MAS). To validate our approach, we have applied a process of KDD for the fight against nosocomial infections within an intensive care unit (ICU) of a University hospital. On a technical level, we have developed a software tool for decision-making support in Java/XML through the agent platform "Madkit".</description><subject>Data mining</subject><subject>Decision support systems</subject><subject>Knowledge discovery</subject><subject>Knowledge Discovery from Databases</subject><subject>Medical services</subject><subject>Multi Agent System</subject><subject>Multi-agent systems</subject><subject>Nosocomial Infection</subject><subject>Organizations</subject><subject>Prediction</subject><isbn>9781479903146</isbn><isbn>1479903140</isbn><isbn>1479903132</isbn><isbn>9781479903122</isbn><isbn>1479903124</isbn><isbn>9781479903139</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AYhFdEUGueoDf7Aom72fNlaT1h0Jt6Xf5k_21XciIblL69FevVMPDNMAwhS84Kzpm7f1mvfLUtSsZFoZW2UqkLcsulcY4JLspLkjlj_73U1yRL6ZMxdkprbsUNeVv1FPbYz3kNCT197YfvFv0e6SamZvjC6UjDNHR0AzP8IonCOLbxhMaeHhDa-dDAhNQPHcT-jlwFaBNmZ12Qj8eH7fo5r96fTmOrPHKj5twIXZfBa-OM82gZR0CpJSBDHXjwdWm0YwE0ILeGKdfoIC0PRlovSmXFgiz_eiMi7sYpdjAdd-cLxA8zEk_c</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Benomrane, Souad</creator><creator>Ben Ayed, Mounir</creator><creator>Alimi, Adel M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>An agent-based Knowledge Discovery from Databases applied in healthcare domain</title><author>Benomrane, Souad ; Ben Ayed, Mounir ; Alimi, Adel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-736b2fd67979de801eae464ae0e6f1fdb27690fa6ae187059c6f481f748d32583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Data mining</topic><topic>Decision support systems</topic><topic>Knowledge discovery</topic><topic>Knowledge Discovery from Databases</topic><topic>Medical services</topic><topic>Multi Agent System</topic><topic>Multi-agent systems</topic><topic>Nosocomial Infection</topic><topic>Organizations</topic><topic>Prediction</topic><toplevel>online_resources</toplevel><creatorcontrib>Benomrane, Souad</creatorcontrib><creatorcontrib>Ben Ayed, Mounir</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benomrane, Souad</au><au>Ben Ayed, Mounir</au><au>Alimi, Adel M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An agent-based Knowledge Discovery from Databases applied in healthcare domain</atitle><btitle>2013 International Conference on Advanced Logistics and Transport</btitle><stitle>ICAdLT</stitle><date>2013-05</date><risdate>2013</risdate><spage>176</spage><epage>180</epage><pages>176-180</pages><isbn>9781479903146</isbn><isbn>1479903140</isbn><eisbn>1479903132</eisbn><eisbn>9781479903122</eisbn><eisbn>1479903124</eisbn><eisbn>9781479903139</eisbn><abstract>Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module). The objective of this study is to propose an approach which assimilates every module to an agent. These agents have to communicate and cooperate to help the user to make the most appropriate decision. Thus, The process of KDD can be likened to a Multi-Agent System (MAS). To validate our approach, we have applied a process of KDD for the fight against nosocomial infections within an intensive care unit (ICU) of a University hospital. On a technical level, we have developed a software tool for decision-making support in Java/XML through the agent platform "Madkit".</abstract><pub>IEEE</pub><doi>10.1109/ICAdLT.2013.6568455</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781479903146 |
ispartof | 2013 International Conference on Advanced Logistics and Transport, 2013, p.176-180 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6568455 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Decision support systems Knowledge discovery Knowledge Discovery from Databases Medical services Multi Agent System Multi-agent systems Nosocomial Infection Organizations Prediction |
title | An agent-based Knowledge Discovery from Databases applied in healthcare domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20agent-based%20Knowledge%20Discovery%20from%20Databases%20applied%20in%20healthcare%20domain&rft.btitle=2013%20International%20Conference%20on%20Advanced%20Logistics%20and%20Transport&rft.au=Benomrane,%20Souad&rft.date=2013-05&rft.spage=176&rft.epage=180&rft.pages=176-180&rft.isbn=9781479903146&rft.isbn_list=1479903140&rft_id=info:doi/10.1109/ICAdLT.2013.6568455&rft_dat=%3Cieee_6IE%3E6568455%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479903132&rft.eisbn_list=9781479903122&rft.eisbn_list=1479903124&rft.eisbn_list=9781479903139&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6568455&rfr_iscdi=true |