An agent-based Knowledge Discovery from Databases applied in healthcare domain

Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Benomrane, Souad, Ben Ayed, Mounir, Alimi, Adel M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue
container_start_page 176
container_title
container_volume
creator Benomrane, Souad
Ben Ayed, Mounir
Alimi, Adel M.
description Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module). The objective of this study is to propose an approach which assimilates every module to an agent. These agents have to communicate and cooperate to help the user to make the most appropriate decision. Thus, The process of KDD can be likened to a Multi-Agent System (MAS). To validate our approach, we have applied a process of KDD for the fight against nosocomial infections within an intensive care unit (ICU) of a University hospital. On a technical level, we have developed a software tool for decision-making support in Java/XML through the agent platform "Madkit".
doi_str_mv 10.1109/ICAdLT.2013.6568455
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6568455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6568455</ieee_id><sourcerecordid>6568455</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-736b2fd67979de801eae464ae0e6f1fdb27690fa6ae187059c6f481f748d32583</originalsourceid><addsrcrecordid>eNo1kNtKw0AYhFdEUGueoDf7Aom72fNlaT1h0Jt6Xf5k_21XciIblL69FevVMPDNMAwhS84Kzpm7f1mvfLUtSsZFoZW2UqkLcsulcY4JLspLkjlj_73U1yRL6ZMxdkprbsUNeVv1FPbYz3kNCT197YfvFv0e6SamZvjC6UjDNHR0AzP8IonCOLbxhMaeHhDa-dDAhNQPHcT-jlwFaBNmZ12Qj8eH7fo5r96fTmOrPHKj5twIXZfBa-OM82gZR0CpJSBDHXjwdWm0YwE0ILeGKdfoIC0PRlovSmXFgiz_eiMi7sYpdjAdd-cLxA8zEk_c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An agent-based Knowledge Discovery from Databases applied in healthcare domain</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Benomrane, Souad ; Ben Ayed, Mounir ; Alimi, Adel M.</creator><creatorcontrib>Benomrane, Souad ; Ben Ayed, Mounir ; Alimi, Adel M.</creatorcontrib><description>Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module). The objective of this study is to propose an approach which assimilates every module to an agent. These agents have to communicate and cooperate to help the user to make the most appropriate decision. Thus, The process of KDD can be likened to a Multi-Agent System (MAS). To validate our approach, we have applied a process of KDD for the fight against nosocomial infections within an intensive care unit (ICU) of a University hospital. On a technical level, we have developed a software tool for decision-making support in Java/XML through the agent platform "Madkit".</description><identifier>ISBN: 9781479903146</identifier><identifier>ISBN: 1479903140</identifier><identifier>EISBN: 1479903132</identifier><identifier>EISBN: 9781479903122</identifier><identifier>EISBN: 1479903124</identifier><identifier>EISBN: 9781479903139</identifier><identifier>DOI: 10.1109/ICAdLT.2013.6568455</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Decision support systems ; Knowledge discovery ; Knowledge Discovery from Databases ; Medical services ; Multi Agent System ; Multi-agent systems ; Nosocomial Infection ; Organizations ; Prediction</subject><ispartof>2013 International Conference on Advanced Logistics and Transport, 2013, p.176-180</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6568455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6568455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benomrane, Souad</creatorcontrib><creatorcontrib>Ben Ayed, Mounir</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><title>An agent-based Knowledge Discovery from Databases applied in healthcare domain</title><title>2013 International Conference on Advanced Logistics and Transport</title><addtitle>ICAdLT</addtitle><description>Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module). The objective of this study is to propose an approach which assimilates every module to an agent. These agents have to communicate and cooperate to help the user to make the most appropriate decision. Thus, The process of KDD can be likened to a Multi-Agent System (MAS). To validate our approach, we have applied a process of KDD for the fight against nosocomial infections within an intensive care unit (ICU) of a University hospital. On a technical level, we have developed a software tool for decision-making support in Java/XML through the agent platform "Madkit".</description><subject>Data mining</subject><subject>Decision support systems</subject><subject>Knowledge discovery</subject><subject>Knowledge Discovery from Databases</subject><subject>Medical services</subject><subject>Multi Agent System</subject><subject>Multi-agent systems</subject><subject>Nosocomial Infection</subject><subject>Organizations</subject><subject>Prediction</subject><isbn>9781479903146</isbn><isbn>1479903140</isbn><isbn>1479903132</isbn><isbn>9781479903122</isbn><isbn>1479903124</isbn><isbn>9781479903139</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AYhFdEUGueoDf7Aom72fNlaT1h0Jt6Xf5k_21XciIblL69FevVMPDNMAwhS84Kzpm7f1mvfLUtSsZFoZW2UqkLcsulcY4JLspLkjlj_73U1yRL6ZMxdkprbsUNeVv1FPbYz3kNCT197YfvFv0e6SamZvjC6UjDNHR0AzP8IonCOLbxhMaeHhDa-dDAhNQPHcT-jlwFaBNmZ12Qj8eH7fo5r96fTmOrPHKj5twIXZfBa-OM82gZR0CpJSBDHXjwdWm0YwE0ILeGKdfoIC0PRlovSmXFgiz_eiMi7sYpdjAdd-cLxA8zEk_c</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Benomrane, Souad</creator><creator>Ben Ayed, Mounir</creator><creator>Alimi, Adel M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>An agent-based Knowledge Discovery from Databases applied in healthcare domain</title><author>Benomrane, Souad ; Ben Ayed, Mounir ; Alimi, Adel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-736b2fd67979de801eae464ae0e6f1fdb27690fa6ae187059c6f481f748d32583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Data mining</topic><topic>Decision support systems</topic><topic>Knowledge discovery</topic><topic>Knowledge Discovery from Databases</topic><topic>Medical services</topic><topic>Multi Agent System</topic><topic>Multi-agent systems</topic><topic>Nosocomial Infection</topic><topic>Organizations</topic><topic>Prediction</topic><toplevel>online_resources</toplevel><creatorcontrib>Benomrane, Souad</creatorcontrib><creatorcontrib>Ben Ayed, Mounir</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benomrane, Souad</au><au>Ben Ayed, Mounir</au><au>Alimi, Adel M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An agent-based Knowledge Discovery from Databases applied in healthcare domain</atitle><btitle>2013 International Conference on Advanced Logistics and Transport</btitle><stitle>ICAdLT</stitle><date>2013-05</date><risdate>2013</risdate><spage>176</spage><epage>180</epage><pages>176-180</pages><isbn>9781479903146</isbn><isbn>1479903140</isbn><eisbn>1479903132</eisbn><eisbn>9781479903122</eisbn><eisbn>1479903124</eisbn><eisbn>9781479903139</eisbn><abstract>Knowledge Discovery from Databases (KDD) process is complex, iterative and interactive. It takes place several phases. For its implementation, several modules should be developed (module for data storage, module for processing data, data mining module, evaluation module, knowledge management module). The objective of this study is to propose an approach which assimilates every module to an agent. These agents have to communicate and cooperate to help the user to make the most appropriate decision. Thus, The process of KDD can be likened to a Multi-Agent System (MAS). To validate our approach, we have applied a process of KDD for the fight against nosocomial infections within an intensive care unit (ICU) of a University hospital. On a technical level, we have developed a software tool for decision-making support in Java/XML through the agent platform "Madkit".</abstract><pub>IEEE</pub><doi>10.1109/ICAdLT.2013.6568455</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781479903146
ispartof 2013 International Conference on Advanced Logistics and Transport, 2013, p.176-180
issn
language eng
recordid cdi_ieee_primary_6568455
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Decision support systems
Knowledge discovery
Knowledge Discovery from Databases
Medical services
Multi Agent System
Multi-agent systems
Nosocomial Infection
Organizations
Prediction
title An agent-based Knowledge Discovery from Databases applied in healthcare domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20agent-based%20Knowledge%20Discovery%20from%20Databases%20applied%20in%20healthcare%20domain&rft.btitle=2013%20International%20Conference%20on%20Advanced%20Logistics%20and%20Transport&rft.au=Benomrane,%20Souad&rft.date=2013-05&rft.spage=176&rft.epage=180&rft.pages=176-180&rft.isbn=9781479903146&rft.isbn_list=1479903140&rft_id=info:doi/10.1109/ICAdLT.2013.6568455&rft_dat=%3Cieee_6IE%3E6568455%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479903132&rft.eisbn_list=9781479903122&rft.eisbn_list=1479903124&rft.eisbn_list=9781479903139&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6568455&rfr_iscdi=true