Sustainable energy consumption monitoring in residential settings
The continuous growth of energy needs and the fact that unpredictable energy demand is mostly served by unsustainable (i.e. fossil-fuel) power generators have given rise to the development of Demand Response (DR) mechanisms for flattening energy demand. Building effective DR mechanisms and user awar...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3182 |
---|---|
container_issue | |
container_start_page | 3177 |
container_title | |
container_volume | |
creator | Nambi, Akshay Uttama S. N. Papaioannou, Thanasis G. Chakraborty, Dipanjan Aberer, Karl |
description | The continuous growth of energy needs and the fact that unpredictable energy demand is mostly served by unsustainable (i.e. fossil-fuel) power generators have given rise to the development of Demand Response (DR) mechanisms for flattening energy demand. Building effective DR mechanisms and user awareness on power consumption can significantly benefit from fine-grained monitoring of user consumption at the appliance level. However, installing and maintaining such a monitoring infrastructure in residential settings can be quite expensive. In this paper, we study the problem of fine-grained appliance power-consumption monitoring based on one house-level meter and few plug-level meters. We explore the trade-off between monitoring accuracy and cost, and exhaustively find the minimum subset of plug-level meters that maximize accuracy. As exhaustive search is time- and resource-consuming, we define a heuristic approach that finds the optimal set of plug-level meters without utilizing any other sets of plug-level meters. Based on experiments with real data, we found that few plug-level meters - when appropriately placed - can very accurately disaggregate the total real power consumption of a residential setting and verified the effectiveness of our heuristic approach. |
doi_str_mv | 10.1109/INFCOM.2013.6567134 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6567134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6567134</ieee_id><sourcerecordid>6567134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-51473c73b86688aeb2076607877b94b215b57e60867a2c7a8efc5d90ae3bee4a3</originalsourceid><addsrcrecordid>eNpVkM1qAjEURtM_qFifwM28wNibv3szS5HaCrYu2kJ3koxXSdGMTOLCt6_Qbrr64Bw4i0-IsYSJlNA8Lt7ms9XrRIHUE7RIUpsrMWrISYOkbWMsXIuBQiPrxpG5-eeMvhUDIKNrifh1L0Y5fwPAJYzKwUBM30-5-Jh82HPFifvduWq7lE-HY4ldqg5diqXrY9pVMVU957jhVKLfV5lLueD8IO62fp959LdD8Tl_-pi91MvV82I2XdZRKSi1lYZ0Szo4ROc8BwWECOSIQmOCkjZYYgSH5FVL3vG2tZsGPOvAbLweivFvNzLz-tjHg-_P679D9A-GsVC7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sustainable energy consumption monitoring in residential settings</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nambi, Akshay Uttama S. N. ; Papaioannou, Thanasis G. ; Chakraborty, Dipanjan ; Aberer, Karl</creator><creatorcontrib>Nambi, Akshay Uttama S. N. ; Papaioannou, Thanasis G. ; Chakraborty, Dipanjan ; Aberer, Karl</creatorcontrib><description>The continuous growth of energy needs and the fact that unpredictable energy demand is mostly served by unsustainable (i.e. fossil-fuel) power generators have given rise to the development of Demand Response (DR) mechanisms for flattening energy demand. Building effective DR mechanisms and user awareness on power consumption can significantly benefit from fine-grained monitoring of user consumption at the appliance level. However, installing and maintaining such a monitoring infrastructure in residential settings can be quite expensive. In this paper, we study the problem of fine-grained appliance power-consumption monitoring based on one house-level meter and few plug-level meters. We explore the trade-off between monitoring accuracy and cost, and exhaustively find the minimum subset of plug-level meters that maximize accuracy. As exhaustive search is time- and resource-consuming, we define a heuristic approach that finds the optimal set of plug-level meters without utilizing any other sets of plug-level meters. Based on experiments with real data, we found that few plug-level meters - when appropriately placed - can very accurately disaggregate the total real power consumption of a residential setting and verified the effectiveness of our heuristic approach.</description><identifier>ISSN: 0743-166X</identifier><identifier>ISBN: 9781467359443</identifier><identifier>ISBN: 1467359440</identifier><identifier>EISSN: 2641-9874</identifier><identifier>EISBN: 9781467359450</identifier><identifier>EISBN: 9781467359467</identifier><identifier>EISBN: 1467359467</identifier><identifier>EISBN: 1467359459</identifier><identifier>DOI: 10.1109/INFCOM.2013.6567134</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Energy consumption ; Energy disaggregation ; FHMM ; Heuristic algorithms ; Hidden Markov models ; Home appliances ; Monitoring ; NILM ; plug-level meter ; Power demand</subject><ispartof>2013 Proceedings IEEE INFOCOM, 2013, p.3177-3182</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6567134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6567134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nambi, Akshay Uttama S. N.</creatorcontrib><creatorcontrib>Papaioannou, Thanasis G.</creatorcontrib><creatorcontrib>Chakraborty, Dipanjan</creatorcontrib><creatorcontrib>Aberer, Karl</creatorcontrib><title>Sustainable energy consumption monitoring in residential settings</title><title>2013 Proceedings IEEE INFOCOM</title><addtitle>INFCOM</addtitle><description>The continuous growth of energy needs and the fact that unpredictable energy demand is mostly served by unsustainable (i.e. fossil-fuel) power generators have given rise to the development of Demand Response (DR) mechanisms for flattening energy demand. Building effective DR mechanisms and user awareness on power consumption can significantly benefit from fine-grained monitoring of user consumption at the appliance level. However, installing and maintaining such a monitoring infrastructure in residential settings can be quite expensive. In this paper, we study the problem of fine-grained appliance power-consumption monitoring based on one house-level meter and few plug-level meters. We explore the trade-off between monitoring accuracy and cost, and exhaustively find the minimum subset of plug-level meters that maximize accuracy. As exhaustive search is time- and resource-consuming, we define a heuristic approach that finds the optimal set of plug-level meters without utilizing any other sets of plug-level meters. Based on experiments with real data, we found that few plug-level meters - when appropriately placed - can very accurately disaggregate the total real power consumption of a residential setting and verified the effectiveness of our heuristic approach.</description><subject>Accuracy</subject><subject>Energy consumption</subject><subject>Energy disaggregation</subject><subject>FHMM</subject><subject>Heuristic algorithms</subject><subject>Hidden Markov models</subject><subject>Home appliances</subject><subject>Monitoring</subject><subject>NILM</subject><subject>plug-level meter</subject><subject>Power demand</subject><issn>0743-166X</issn><issn>2641-9874</issn><isbn>9781467359443</isbn><isbn>1467359440</isbn><isbn>9781467359450</isbn><isbn>9781467359467</isbn><isbn>1467359467</isbn><isbn>1467359459</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1qAjEURtM_qFifwM28wNibv3szS5HaCrYu2kJ3koxXSdGMTOLCt6_Qbrr64Bw4i0-IsYSJlNA8Lt7ms9XrRIHUE7RIUpsrMWrISYOkbWMsXIuBQiPrxpG5-eeMvhUDIKNrifh1L0Y5fwPAJYzKwUBM30-5-Jh82HPFifvduWq7lE-HY4ldqg5diqXrY9pVMVU957jhVKLfV5lLueD8IO62fp959LdD8Tl_-pi91MvV82I2XdZRKSi1lYZ0Szo4ROc8BwWECOSIQmOCkjZYYgSH5FVL3vG2tZsGPOvAbLweivFvNzLz-tjHg-_P679D9A-GsVC7</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Nambi, Akshay Uttama S. N.</creator><creator>Papaioannou, Thanasis G.</creator><creator>Chakraborty, Dipanjan</creator><creator>Aberer, Karl</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Sustainable energy consumption monitoring in residential settings</title><author>Nambi, Akshay Uttama S. N. ; Papaioannou, Thanasis G. ; Chakraborty, Dipanjan ; Aberer, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-51473c73b86688aeb2076607877b94b215b57e60867a2c7a8efc5d90ae3bee4a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Energy consumption</topic><topic>Energy disaggregation</topic><topic>FHMM</topic><topic>Heuristic algorithms</topic><topic>Hidden Markov models</topic><topic>Home appliances</topic><topic>Monitoring</topic><topic>NILM</topic><topic>plug-level meter</topic><topic>Power demand</topic><toplevel>online_resources</toplevel><creatorcontrib>Nambi, Akshay Uttama S. N.</creatorcontrib><creatorcontrib>Papaioannou, Thanasis G.</creatorcontrib><creatorcontrib>Chakraborty, Dipanjan</creatorcontrib><creatorcontrib>Aberer, Karl</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nambi, Akshay Uttama S. N.</au><au>Papaioannou, Thanasis G.</au><au>Chakraborty, Dipanjan</au><au>Aberer, Karl</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sustainable energy consumption monitoring in residential settings</atitle><btitle>2013 Proceedings IEEE INFOCOM</btitle><stitle>INFCOM</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>3177</spage><epage>3182</epage><pages>3177-3182</pages><issn>0743-166X</issn><eissn>2641-9874</eissn><isbn>9781467359443</isbn><isbn>1467359440</isbn><eisbn>9781467359450</eisbn><eisbn>9781467359467</eisbn><eisbn>1467359467</eisbn><eisbn>1467359459</eisbn><abstract>The continuous growth of energy needs and the fact that unpredictable energy demand is mostly served by unsustainable (i.e. fossil-fuel) power generators have given rise to the development of Demand Response (DR) mechanisms for flattening energy demand. Building effective DR mechanisms and user awareness on power consumption can significantly benefit from fine-grained monitoring of user consumption at the appliance level. However, installing and maintaining such a monitoring infrastructure in residential settings can be quite expensive. In this paper, we study the problem of fine-grained appliance power-consumption monitoring based on one house-level meter and few plug-level meters. We explore the trade-off between monitoring accuracy and cost, and exhaustively find the minimum subset of plug-level meters that maximize accuracy. As exhaustive search is time- and resource-consuming, we define a heuristic approach that finds the optimal set of plug-level meters without utilizing any other sets of plug-level meters. Based on experiments with real data, we found that few plug-level meters - when appropriately placed - can very accurately disaggregate the total real power consumption of a residential setting and verified the effectiveness of our heuristic approach.</abstract><pub>IEEE</pub><doi>10.1109/INFCOM.2013.6567134</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-166X |
ispartof | 2013 Proceedings IEEE INFOCOM, 2013, p.3177-3182 |
issn | 0743-166X 2641-9874 |
language | eng |
recordid | cdi_ieee_primary_6567134 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Energy consumption Energy disaggregation FHMM Heuristic algorithms Hidden Markov models Home appliances Monitoring NILM plug-level meter Power demand |
title | Sustainable energy consumption monitoring in residential settings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sustainable%20energy%20consumption%20monitoring%20in%20residential%20settings&rft.btitle=2013%20Proceedings%20IEEE%20INFOCOM&rft.au=Nambi,%20Akshay%20Uttama%20S.%20N.&rft.date=2013-01-01&rft.spage=3177&rft.epage=3182&rft.pages=3177-3182&rft.issn=0743-166X&rft.eissn=2641-9874&rft.isbn=9781467359443&rft.isbn_list=1467359440&rft_id=info:doi/10.1109/INFCOM.2013.6567134&rft_dat=%3Cieee_6IE%3E6567134%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467359450&rft.eisbn_list=9781467359467&rft.eisbn_list=1467359467&rft.eisbn_list=1467359459&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6567134&rfr_iscdi=true |