Automatic target segmentation based on texture for microscopic images of Chinese herbal powders
The identification of Chinese herbal powders is usually based on physical or chemical detection, but that is far from enough to identity dozens of herbal species. Microscopic images of these powders contain variety of information, and important evidence for identification. These images usually conta...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1478 |
---|---|
container_issue | |
container_start_page | 1473 |
container_title | |
container_volume | |
creator | Jun Li Yixu Song Yaoli Li Shaoqin Cai Zehong Yang |
description | The identification of Chinese herbal powders is usually based on physical or chemical detection, but that is far from enough to identity dozens of herbal species. Microscopic images of these powders contain variety of information, and important evidence for identification. These images usually contain variety of substance, and most of them are noises, which makes the target segmentation become a difficult job. An effective automatic target segmentation algorithm based on texture is proposed in this paper. Our method consists of two steps: "Preliminary Segmentation" and "Further Segmentation". Firstly, feature vector of texture is extracted and clustered into two groups: background and foreground; secondly, taking the continuity of edge and the locality of target into consideration, energy equations are established, and Maximum flow-Minimum cut Algorithm is applied to solve them. Three groups of images are used to test our method: microscopic images of Chinese herbal powders, Brodaze Images, and natural texture images. And the experimental results show that our method achieves a better segmentation compared with Grab-Cut, and additionally user inter-action is not required in our method. |
doi_str_mv | 10.1109/CCDC.2013.6561159 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6561159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6561159</ieee_id><sourcerecordid>6561159</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-588ed99eb884ad5c67a9b6751f895e35cd6249952f872000a6121cdba5a56b713</originalsourceid><addsrcrecordid>eNpVUNtKAzEUjDew1H6A-JIf2JrLniTnsaxWhYIv-lyyu2fblW5TkhT1712wCD7NMMMMwzB2K8VcSoH3VfVQzZWQem7ASAl4xmZonSyN1QBaqXM2kVi6AsvSXvzzNF7-eRqv2SylDyHEWGucEBO2XhxzGHzuG5593FDmiTYD7fMohT2vfaKWjyTTVz5G4l2IfOibGFITDmOoH_yGEg8dr7b9nhLxLcXa7_ghfLYU0w276vwu0eyEU_a-fHyrnovV69NLtVgVvbSQC3COWkSqnSt9C42xHmtjQXYOgTQ0rVElIqjOWTXu90Yq2bS1Bw-mtlJP2d1vb09E60Mcd8Xv9eku_QP0LFpV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic target segmentation based on texture for microscopic images of Chinese herbal powders</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jun Li ; Yixu Song ; Yaoli Li ; Shaoqin Cai ; Zehong Yang</creator><creatorcontrib>Jun Li ; Yixu Song ; Yaoli Li ; Shaoqin Cai ; Zehong Yang</creatorcontrib><description>The identification of Chinese herbal powders is usually based on physical or chemical detection, but that is far from enough to identity dozens of herbal species. Microscopic images of these powders contain variety of information, and important evidence for identification. These images usually contain variety of substance, and most of them are noises, which makes the target segmentation become a difficult job. An effective automatic target segmentation algorithm based on texture is proposed in this paper. Our method consists of two steps: "Preliminary Segmentation" and "Further Segmentation". Firstly, feature vector of texture is extracted and clustered into two groups: background and foreground; secondly, taking the continuity of edge and the locality of target into consideration, energy equations are established, and Maximum flow-Minimum cut Algorithm is applied to solve them. Three groups of images are used to test our method: microscopic images of Chinese herbal powders, Brodaze Images, and natural texture images. And the experimental results show that our method achieves a better segmentation compared with Grab-Cut, and additionally user inter-action is not required in our method.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781467355339</identifier><identifier>ISBN: 146735533X</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781467355322</identifier><identifier>EISBN: 9781467355346</identifier><identifier>EISBN: 1467355321</identifier><identifier>EISBN: 1467355348</identifier><identifier>DOI: 10.1109/CCDC.2013.6561159</identifier><language>eng</language><publisher>IEEE</publisher><subject>automatic segmentation ; Chinese herbal powder ; Feature extraction ; Image edge detection ; Image segmentation ; microscopic images ; Microscopy ; Noise ; Powders ; texture feature ; Vectors</subject><ispartof>2013 25th Chinese Control and Decision Conference (CCDC), 2013, p.1473-1478</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6561159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6561159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jun Li</creatorcontrib><creatorcontrib>Yixu Song</creatorcontrib><creatorcontrib>Yaoli Li</creatorcontrib><creatorcontrib>Shaoqin Cai</creatorcontrib><creatorcontrib>Zehong Yang</creatorcontrib><title>Automatic target segmentation based on texture for microscopic images of Chinese herbal powders</title><title>2013 25th Chinese Control and Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>The identification of Chinese herbal powders is usually based on physical or chemical detection, but that is far from enough to identity dozens of herbal species. Microscopic images of these powders contain variety of information, and important evidence for identification. These images usually contain variety of substance, and most of them are noises, which makes the target segmentation become a difficult job. An effective automatic target segmentation algorithm based on texture is proposed in this paper. Our method consists of two steps: "Preliminary Segmentation" and "Further Segmentation". Firstly, feature vector of texture is extracted and clustered into two groups: background and foreground; secondly, taking the continuity of edge and the locality of target into consideration, energy equations are established, and Maximum flow-Minimum cut Algorithm is applied to solve them. Three groups of images are used to test our method: microscopic images of Chinese herbal powders, Brodaze Images, and natural texture images. And the experimental results show that our method achieves a better segmentation compared with Grab-Cut, and additionally user inter-action is not required in our method.</description><subject>automatic segmentation</subject><subject>Chinese herbal powder</subject><subject>Feature extraction</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>microscopic images</subject><subject>Microscopy</subject><subject>Noise</subject><subject>Powders</subject><subject>texture feature</subject><subject>Vectors</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781467355339</isbn><isbn>146735533X</isbn><isbn>9781467355322</isbn><isbn>9781467355346</isbn><isbn>1467355321</isbn><isbn>1467355348</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtKAzEUjDew1H6A-JIf2JrLniTnsaxWhYIv-lyyu2fblW5TkhT1712wCD7NMMMMwzB2K8VcSoH3VfVQzZWQem7ASAl4xmZonSyN1QBaqXM2kVi6AsvSXvzzNF7-eRqv2SylDyHEWGucEBO2XhxzGHzuG5593FDmiTYD7fMohT2vfaKWjyTTVz5G4l2IfOibGFITDmOoH_yGEg8dr7b9nhLxLcXa7_ghfLYU0w276vwu0eyEU_a-fHyrnovV69NLtVgVvbSQC3COWkSqnSt9C42xHmtjQXYOgTQ0rVElIqjOWTXu90Yq2bS1Bw-mtlJP2d1vb09E60Mcd8Xv9eku_QP0LFpV</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Jun Li</creator><creator>Yixu Song</creator><creator>Yaoli Li</creator><creator>Shaoqin Cai</creator><creator>Zehong Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>Automatic target segmentation based on texture for microscopic images of Chinese herbal powders</title><author>Jun Li ; Yixu Song ; Yaoli Li ; Shaoqin Cai ; Zehong Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-588ed99eb884ad5c67a9b6751f895e35cd6249952f872000a6121cdba5a56b713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>automatic segmentation</topic><topic>Chinese herbal powder</topic><topic>Feature extraction</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>microscopic images</topic><topic>Microscopy</topic><topic>Noise</topic><topic>Powders</topic><topic>texture feature</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jun Li</creatorcontrib><creatorcontrib>Yixu Song</creatorcontrib><creatorcontrib>Yaoli Li</creatorcontrib><creatorcontrib>Shaoqin Cai</creatorcontrib><creatorcontrib>Zehong Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun Li</au><au>Yixu Song</au><au>Yaoli Li</au><au>Shaoqin Cai</au><au>Zehong Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic target segmentation based on texture for microscopic images of Chinese herbal powders</atitle><btitle>2013 25th Chinese Control and Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2013-05</date><risdate>2013</risdate><spage>1473</spage><epage>1478</epage><pages>1473-1478</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781467355339</isbn><isbn>146735533X</isbn><eisbn>9781467355322</eisbn><eisbn>9781467355346</eisbn><eisbn>1467355321</eisbn><eisbn>1467355348</eisbn><abstract>The identification of Chinese herbal powders is usually based on physical or chemical detection, but that is far from enough to identity dozens of herbal species. Microscopic images of these powders contain variety of information, and important evidence for identification. These images usually contain variety of substance, and most of them are noises, which makes the target segmentation become a difficult job. An effective automatic target segmentation algorithm based on texture is proposed in this paper. Our method consists of two steps: "Preliminary Segmentation" and "Further Segmentation". Firstly, feature vector of texture is extracted and clustered into two groups: background and foreground; secondly, taking the continuity of edge and the locality of target into consideration, energy equations are established, and Maximum flow-Minimum cut Algorithm is applied to solve them. Three groups of images are used to test our method: microscopic images of Chinese herbal powders, Brodaze Images, and natural texture images. And the experimental results show that our method achieves a better segmentation compared with Grab-Cut, and additionally user inter-action is not required in our method.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2013.6561159</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2013 25th Chinese Control and Decision Conference (CCDC), 2013, p.1473-1478 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_6561159 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | automatic segmentation Chinese herbal powder Feature extraction Image edge detection Image segmentation microscopic images Microscopy Noise Powders texture feature Vectors |
title | Automatic target segmentation based on texture for microscopic images of Chinese herbal powders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20target%20segmentation%20based%20on%20texture%20for%20microscopic%20images%20of%20Chinese%20herbal%20powders&rft.btitle=2013%2025th%20Chinese%20Control%20and%20Decision%20Conference%20(CCDC)&rft.au=Jun%20Li&rft.date=2013-05&rft.spage=1473&rft.epage=1478&rft.pages=1473-1478&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781467355339&rft.isbn_list=146735533X&rft_id=info:doi/10.1109/CCDC.2013.6561159&rft_dat=%3Cieee_6IE%3E6561159%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467355322&rft.eisbn_list=9781467355346&rft.eisbn_list=1467355321&rft.eisbn_list=1467355348&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6561159&rfr_iscdi=true |