Application of the steepest descent approximate linear programming on cyclic cleaning scheduling of boiler

Traditional approximate linear programming may exclude the optimal solution out of the boundary condition, which is caused by the subjective choices of initial feasible point, step restriction and reduction coefficient. In this paper, a method called steepest descent-approximate linear programming i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu Pingping, Ma Xin, Gao Dong, Zhang Beike
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 874
container_issue
container_start_page 869
container_title
container_volume
creator Liu Pingping
Ma Xin
Gao Dong
Zhang Beike
description Traditional approximate linear programming may exclude the optimal solution out of the boundary condition, which is caused by the subjective choices of initial feasible point, step restriction and reduction coefficient. In this paper, a method called steepest descent-approximate linear programming is presented which redefines the judgment conditions and the way of boundary adjustment based on the purposeful search and rapid convergence from steepest descent method, where the boundary directions are adjusted together by the nonlinear constraint satisfaction degree and the current objective function. Besides absorbing the original advantages of easy implementation and convenient solution from traditional approximate linear programming, the new method can not only eliminate the negative impact which is caused by subjective choices of step restriction and reduction coefficient, but also solve a nonlinear programming problem which only contains linear constraints. The method has been applied in a real thermal power plant, for which a mathematical model for the solution of the cyclic cleaning scheduling problem of boiler system with decaying performance is built and optimized. Moreover, the usefulness of the method shows it achieves remarkable energy saving compared with the original approaches.
doi_str_mv 10.1109/CCDC.2013.6561045
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6561045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6561045</ieee_id><sourcerecordid>6561045</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f7d8326082d52e6606e9fd35afd335945ef26fe6deb308f2c00d403748cb20f73</originalsourceid><addsrcrecordid>eNpVkNtKAzEQhuMJLLUPIN7kBbZOzpvLsloVCt7odUmTSZuy3V12I9i3d9UieDMD_8d8DD8htwzmjIG9r6qHas6BiblWmoFUZ2RmTcmkNkIpwfk5mTAry8JKaS7-MWEv_5iw12Q2DHsAGLW6BJiQ_aLr6uRdTm1D20jzDumQETscMg04eGwydV3Xt5_p4DLSOjXoejoG294dDqnZ0vHSH_1oob5G13xHg99h-Kh_aKSbNtXY35Cr6OoBZ6c9Je_Lx7fquVi9Pr1Ui1WRmFG5iCaUgmsoeVActQaNNgah3DiEslJh5DqiDrgRUEbuAYIEYWTpNxyiEVNy9-tNiLju-vHv_rg-NSe-ALAXXu4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of the steepest descent approximate linear programming on cyclic cleaning scheduling of boiler</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu Pingping ; Ma Xin ; Gao Dong ; Zhang Beike</creator><creatorcontrib>Liu Pingping ; Ma Xin ; Gao Dong ; Zhang Beike</creatorcontrib><description>Traditional approximate linear programming may exclude the optimal solution out of the boundary condition, which is caused by the subjective choices of initial feasible point, step restriction and reduction coefficient. In this paper, a method called steepest descent-approximate linear programming is presented which redefines the judgment conditions and the way of boundary adjustment based on the purposeful search and rapid convergence from steepest descent method, where the boundary directions are adjusted together by the nonlinear constraint satisfaction degree and the current objective function. Besides absorbing the original advantages of easy implementation and convenient solution from traditional approximate linear programming, the new method can not only eliminate the negative impact which is caused by subjective choices of step restriction and reduction coefficient, but also solve a nonlinear programming problem which only contains linear constraints. The method has been applied in a real thermal power plant, for which a mathematical model for the solution of the cyclic cleaning scheduling problem of boiler system with decaying performance is built and optimized. Moreover, the usefulness of the method shows it achieves remarkable energy saving compared with the original approaches.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781467355339</identifier><identifier>ISBN: 146735533X</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781467355322</identifier><identifier>EISBN: 9781467355346</identifier><identifier>EISBN: 1467355321</identifier><identifier>EISBN: 1467355348</identifier><identifier>DOI: 10.1109/CCDC.2013.6561045</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boilers ; Boundary conditions ; Cleaning ; Cyclic Cleaning Scheduling of Boiler ; Linear programming ; Nonlinear Programming ; Programming ; Redundancy ; Steepest Descent Approximate Linear Programming ; Vectors</subject><ispartof>2013 25th Chinese Control and Decision Conference (CCDC), 2013, p.869-874</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6561045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6561045$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu Pingping</creatorcontrib><creatorcontrib>Ma Xin</creatorcontrib><creatorcontrib>Gao Dong</creatorcontrib><creatorcontrib>Zhang Beike</creatorcontrib><title>Application of the steepest descent approximate linear programming on cyclic cleaning scheduling of boiler</title><title>2013 25th Chinese Control and Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>Traditional approximate linear programming may exclude the optimal solution out of the boundary condition, which is caused by the subjective choices of initial feasible point, step restriction and reduction coefficient. In this paper, a method called steepest descent-approximate linear programming is presented which redefines the judgment conditions and the way of boundary adjustment based on the purposeful search and rapid convergence from steepest descent method, where the boundary directions are adjusted together by the nonlinear constraint satisfaction degree and the current objective function. Besides absorbing the original advantages of easy implementation and convenient solution from traditional approximate linear programming, the new method can not only eliminate the negative impact which is caused by subjective choices of step restriction and reduction coefficient, but also solve a nonlinear programming problem which only contains linear constraints. The method has been applied in a real thermal power plant, for which a mathematical model for the solution of the cyclic cleaning scheduling problem of boiler system with decaying performance is built and optimized. Moreover, the usefulness of the method shows it achieves remarkable energy saving compared with the original approaches.</description><subject>Boilers</subject><subject>Boundary conditions</subject><subject>Cleaning</subject><subject>Cyclic Cleaning Scheduling of Boiler</subject><subject>Linear programming</subject><subject>Nonlinear Programming</subject><subject>Programming</subject><subject>Redundancy</subject><subject>Steepest Descent Approximate Linear Programming</subject><subject>Vectors</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781467355339</isbn><isbn>146735533X</isbn><isbn>9781467355322</isbn><isbn>9781467355346</isbn><isbn>1467355321</isbn><isbn>1467355348</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkNtKAzEQhuMJLLUPIN7kBbZOzpvLsloVCt7odUmTSZuy3V12I9i3d9UieDMD_8d8DD8htwzmjIG9r6qHas6BiblWmoFUZ2RmTcmkNkIpwfk5mTAry8JKaS7-MWEv_5iw12Q2DHsAGLW6BJiQ_aLr6uRdTm1D20jzDumQETscMg04eGwydV3Xt5_p4DLSOjXoejoG294dDqnZ0vHSH_1oob5G13xHg99h-Kh_aKSbNtXY35Cr6OoBZ6c9Je_Lx7fquVi9Pr1Ui1WRmFG5iCaUgmsoeVActQaNNgah3DiEslJh5DqiDrgRUEbuAYIEYWTpNxyiEVNy9-tNiLju-vHv_rg-NSe-ALAXXu4</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Liu Pingping</creator><creator>Ma Xin</creator><creator>Gao Dong</creator><creator>Zhang Beike</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>Application of the steepest descent approximate linear programming on cyclic cleaning scheduling of boiler</title><author>Liu Pingping ; Ma Xin ; Gao Dong ; Zhang Beike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f7d8326082d52e6606e9fd35afd335945ef26fe6deb308f2c00d403748cb20f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boilers</topic><topic>Boundary conditions</topic><topic>Cleaning</topic><topic>Cyclic Cleaning Scheduling of Boiler</topic><topic>Linear programming</topic><topic>Nonlinear Programming</topic><topic>Programming</topic><topic>Redundancy</topic><topic>Steepest Descent Approximate Linear Programming</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu Pingping</creatorcontrib><creatorcontrib>Ma Xin</creatorcontrib><creatorcontrib>Gao Dong</creatorcontrib><creatorcontrib>Zhang Beike</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu Pingping</au><au>Ma Xin</au><au>Gao Dong</au><au>Zhang Beike</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of the steepest descent approximate linear programming on cyclic cleaning scheduling of boiler</atitle><btitle>2013 25th Chinese Control and Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2013-05</date><risdate>2013</risdate><spage>869</spage><epage>874</epage><pages>869-874</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781467355339</isbn><isbn>146735533X</isbn><eisbn>9781467355322</eisbn><eisbn>9781467355346</eisbn><eisbn>1467355321</eisbn><eisbn>1467355348</eisbn><abstract>Traditional approximate linear programming may exclude the optimal solution out of the boundary condition, which is caused by the subjective choices of initial feasible point, step restriction and reduction coefficient. In this paper, a method called steepest descent-approximate linear programming is presented which redefines the judgment conditions and the way of boundary adjustment based on the purposeful search and rapid convergence from steepest descent method, where the boundary directions are adjusted together by the nonlinear constraint satisfaction degree and the current objective function. Besides absorbing the original advantages of easy implementation and convenient solution from traditional approximate linear programming, the new method can not only eliminate the negative impact which is caused by subjective choices of step restriction and reduction coefficient, but also solve a nonlinear programming problem which only contains linear constraints. The method has been applied in a real thermal power plant, for which a mathematical model for the solution of the cyclic cleaning scheduling problem of boiler system with decaying performance is built and optimized. Moreover, the usefulness of the method shows it achieves remarkable energy saving compared with the original approaches.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2013.6561045</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2013 25th Chinese Control and Decision Conference (CCDC), 2013, p.869-874
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_6561045
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Boilers
Boundary conditions
Cleaning
Cyclic Cleaning Scheduling of Boiler
Linear programming
Nonlinear Programming
Programming
Redundancy
Steepest Descent Approximate Linear Programming
Vectors
title Application of the steepest descent approximate linear programming on cyclic cleaning scheduling of boiler
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T06%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20the%20steepest%20descent%20approximate%20linear%20programming%20on%20cyclic%20cleaning%20scheduling%20of%20boiler&rft.btitle=2013%2025th%20Chinese%20Control%20and%20Decision%20Conference%20(CCDC)&rft.au=Liu%20Pingping&rft.date=2013-05&rft.spage=869&rft.epage=874&rft.pages=869-874&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781467355339&rft.isbn_list=146735533X&rft_id=info:doi/10.1109/CCDC.2013.6561045&rft_dat=%3Cieee_6IE%3E6561045%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467355322&rft.eisbn_list=9781467355346&rft.eisbn_list=1467355321&rft.eisbn_list=1467355348&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6561045&rfr_iscdi=true