Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads
Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PE...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2013-09, Vol.4 (3), p.1371-1380 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1380 |
---|---|
container_issue | 3 |
container_start_page | 1371 |
container_title | IEEE transactions on smart grid |
container_volume | 4 |
creator | Liang Du Restrepo, Jose A. Yi Yang Harley, Ronald G. Habetler, Thomas G. |
description | Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PELs to handle challenges such as the diversity within each type of PELs and similarity between different types of PELs with similar front-end power supply units. Existing methods provide only absolute decisions which are not reliable when handling these challenges. This paper presents a simple yet efficient and practical hybrid supervised self-organizing map (SSOM)/Bayesian identifier for PELs. The proposed identifier can classify PELs into clusters by inherent similarities due to similar front-end power supply topologies, extract and utilize statistical information, and provide the probability of the unknown load belonging to a specific type of load. Tests based on real-world data validate that the proposed methods are accurate, robust, and applicable. |
doi_str_mv | 10.1109/TSG.2013.2263231 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6558874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6558874</ieee_id><sourcerecordid>10_1109_TSG_2013_2263231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-788e41a4c1fabadd0ab63ebbae9fc6d27d07d7a05d08ca946845b6e6bebdca873</originalsourceid><addsrcrecordid>eNpFkFFLwzAQx4MoOObeBV_6AdaZNG3aPsqYczDcYPO5XJJLidREkk7QT2_nxryXO47_7-B-hNwzOmOM1o_73XKWUcZnWSZ4xtkVGbE6r1NOBbu-zAW_JZMY3-lQnHOR1SPiX72zrg-HaL9wmuywM-kmtODsj3XtNAGnk23wEqTtbOytSuYdxGiNVdBb7_4CK42u_195k2y7Q9uiTlcuWXSo-jCAaw863pEbA13EybmPydvzYj9_Sdeb5Wr-tE7V8EGfllWFOYNcMQMStKYgBUcpAWujhM5KTUtdAi00rRTUuajyQgoUEqVWUJV8TOjprgo-xoCm-Qz2A8J3w2hzdNYMzpqjs-bsbEAeTohFxEtcFEVVlTn_BQoQask</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads</title><source>IEEE Electronic Library (IEL)</source><creator>Liang Du ; Restrepo, Jose A. ; Yi Yang ; Harley, Ronald G. ; Habetler, Thomas G.</creator><creatorcontrib>Liang Du ; Restrepo, Jose A. ; Yi Yang ; Harley, Ronald G. ; Habetler, Thomas G.</creatorcontrib><description>Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PELs to handle challenges such as the diversity within each type of PELs and similarity between different types of PELs with similar front-end power supply units. Existing methods provide only absolute decisions which are not reliable when handling these challenges. This paper presents a simple yet efficient and practical hybrid supervised self-organizing map (SSOM)/Bayesian identifier for PELs. The proposed identifier can classify PELs into clusters by inherent similarities due to similar front-end power supply topologies, extract and utilize statistical information, and provide the probability of the unknown load belonging to a specific type of load. Tests based on real-world data validate that the proposed methods are accurate, robust, and applicable.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2013.2263231</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; Electric load identification ; high efficiency buildings ; Light emitting diodes ; Monitoring ; Neurons ; nonintrusive load monitoring ; self-organizing map ; Training ; Vectors</subject><ispartof>IEEE transactions on smart grid, 2013-09, Vol.4 (3), p.1371-1380</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-788e41a4c1fabadd0ab63ebbae9fc6d27d07d7a05d08ca946845b6e6bebdca873</citedby><cites>FETCH-LOGICAL-c263t-788e41a4c1fabadd0ab63ebbae9fc6d27d07d7a05d08ca946845b6e6bebdca873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6558874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6558874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Du</creatorcontrib><creatorcontrib>Restrepo, Jose A.</creatorcontrib><creatorcontrib>Yi Yang</creatorcontrib><creatorcontrib>Harley, Ronald G.</creatorcontrib><creatorcontrib>Habetler, Thomas G.</creatorcontrib><title>Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PELs to handle challenges such as the diversity within each type of PELs and similarity between different types of PELs with similar front-end power supply units. Existing methods provide only absolute decisions which are not reliable when handling these challenges. This paper presents a simple yet efficient and practical hybrid supervised self-organizing map (SSOM)/Bayesian identifier for PELs. The proposed identifier can classify PELs into clusters by inherent similarities due to similar front-end power supply topologies, extract and utilize statistical information, and provide the probability of the unknown load belonging to a specific type of load. Tests based on real-world data validate that the proposed methods are accurate, robust, and applicable.</description><subject>Computers</subject><subject>Electric load identification</subject><subject>high efficiency buildings</subject><subject>Light emitting diodes</subject><subject>Monitoring</subject><subject>Neurons</subject><subject>nonintrusive load monitoring</subject><subject>self-organizing map</subject><subject>Training</subject><subject>Vectors</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkFFLwzAQx4MoOObeBV_6AdaZNG3aPsqYczDcYPO5XJJLidREkk7QT2_nxryXO47_7-B-hNwzOmOM1o_73XKWUcZnWSZ4xtkVGbE6r1NOBbu-zAW_JZMY3-lQnHOR1SPiX72zrg-HaL9wmuywM-kmtODsj3XtNAGnk23wEqTtbOytSuYdxGiNVdBb7_4CK42u_195k2y7Q9uiTlcuWXSo-jCAaw863pEbA13EybmPydvzYj9_Sdeb5Wr-tE7V8EGfllWFOYNcMQMStKYgBUcpAWujhM5KTUtdAi00rRTUuajyQgoUEqVWUJV8TOjprgo-xoCm-Qz2A8J3w2hzdNYMzpqjs-bsbEAeTohFxEtcFEVVlTn_BQoQask</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Liang Du</creator><creator>Restrepo, Jose A.</creator><creator>Yi Yang</creator><creator>Harley, Ronald G.</creator><creator>Habetler, Thomas G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130901</creationdate><title>Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads</title><author>Liang Du ; Restrepo, Jose A. ; Yi Yang ; Harley, Ronald G. ; Habetler, Thomas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-788e41a4c1fabadd0ab63ebbae9fc6d27d07d7a05d08ca946845b6e6bebdca873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computers</topic><topic>Electric load identification</topic><topic>high efficiency buildings</topic><topic>Light emitting diodes</topic><topic>Monitoring</topic><topic>Neurons</topic><topic>nonintrusive load monitoring</topic><topic>self-organizing map</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang Du</creatorcontrib><creatorcontrib>Restrepo, Jose A.</creatorcontrib><creatorcontrib>Yi Yang</creatorcontrib><creatorcontrib>Harley, Ronald G.</creatorcontrib><creatorcontrib>Habetler, Thomas G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Du</au><au>Restrepo, Jose A.</au><au>Yi Yang</au><au>Harley, Ronald G.</au><au>Habetler, Thomas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>4</volume><issue>3</issue><spage>1371</spage><epage>1380</epage><pages>1371-1380</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PELs to handle challenges such as the diversity within each type of PELs and similarity between different types of PELs with similar front-end power supply units. Existing methods provide only absolute decisions which are not reliable when handling these challenges. This paper presents a simple yet efficient and practical hybrid supervised self-organizing map (SSOM)/Bayesian identifier for PELs. The proposed identifier can classify PELs into clusters by inherent similarities due to similar front-end power supply topologies, extract and utilize statistical information, and provide the probability of the unknown load belonging to a specific type of load. Tests based on real-world data validate that the proposed methods are accurate, robust, and applicable.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2013.2263231</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2013-09, Vol.4 (3), p.1371-1380 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_6558874 |
source | IEEE Electronic Library (IEL) |
subjects | Computers Electric load identification high efficiency buildings Light emitting diodes Monitoring Neurons nonintrusive load monitoring self-organizing map Training Vectors |
title | Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonintrusive,%20Self-Organizing,%20and%20Probabilistic%20Classification%20and%20Identification%20of%20Plugged-In%20Electric%20Loads&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Liang%20Du&rft.date=2013-09-01&rft.volume=4&rft.issue=3&rft.spage=1371&rft.epage=1380&rft.pages=1371-1380&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2013.2263231&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2013_2263231%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6558874&rfr_iscdi=true |