Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads

Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2013-09, Vol.4 (3), p.1371-1380
Hauptverfasser: Liang Du, Restrepo, Jose A., Yi Yang, Harley, Ronald G., Habetler, Thomas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1380
container_issue 3
container_start_page 1371
container_title IEEE transactions on smart grid
container_volume 4
creator Liang Du
Restrepo, Jose A.
Yi Yang
Harley, Ronald G.
Habetler, Thomas G.
description Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PELs to handle challenges such as the diversity within each type of PELs and similarity between different types of PELs with similar front-end power supply units. Existing methods provide only absolute decisions which are not reliable when handling these challenges. This paper presents a simple yet efficient and practical hybrid supervised self-organizing map (SSOM)/Bayesian identifier for PELs. The proposed identifier can classify PELs into clusters by inherent similarities due to similar front-end power supply topologies, extract and utilize statistical information, and provide the probability of the unknown load belonging to a specific type of load. Tests based on real-world data validate that the proposed methods are accurate, robust, and applicable.
doi_str_mv 10.1109/TSG.2013.2263231
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6558874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6558874</ieee_id><sourcerecordid>10_1109_TSG_2013_2263231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-788e41a4c1fabadd0ab63ebbae9fc6d27d07d7a05d08ca946845b6e6bebdca873</originalsourceid><addsrcrecordid>eNpFkFFLwzAQx4MoOObeBV_6AdaZNG3aPsqYczDcYPO5XJJLidREkk7QT2_nxryXO47_7-B-hNwzOmOM1o_73XKWUcZnWSZ4xtkVGbE6r1NOBbu-zAW_JZMY3-lQnHOR1SPiX72zrg-HaL9wmuywM-kmtODsj3XtNAGnk23wEqTtbOytSuYdxGiNVdBb7_4CK42u_195k2y7Q9uiTlcuWXSo-jCAaw863pEbA13EybmPydvzYj9_Sdeb5Wr-tE7V8EGfllWFOYNcMQMStKYgBUcpAWujhM5KTUtdAi00rRTUuajyQgoUEqVWUJV8TOjprgo-xoCm-Qz2A8J3w2hzdNYMzpqjs-bsbEAeTohFxEtcFEVVlTn_BQoQask</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads</title><source>IEEE Electronic Library (IEL)</source><creator>Liang Du ; Restrepo, Jose A. ; Yi Yang ; Harley, Ronald G. ; Habetler, Thomas G.</creator><creatorcontrib>Liang Du ; Restrepo, Jose A. ; Yi Yang ; Harley, Ronald G. ; Habetler, Thomas G.</creatorcontrib><description>Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PELs to handle challenges such as the diversity within each type of PELs and similarity between different types of PELs with similar front-end power supply units. Existing methods provide only absolute decisions which are not reliable when handling these challenges. This paper presents a simple yet efficient and practical hybrid supervised self-organizing map (SSOM)/Bayesian identifier for PELs. The proposed identifier can classify PELs into clusters by inherent similarities due to similar front-end power supply topologies, extract and utilize statistical information, and provide the probability of the unknown load belonging to a specific type of load. Tests based on real-world data validate that the proposed methods are accurate, robust, and applicable.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2013.2263231</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; Electric load identification ; high efficiency buildings ; Light emitting diodes ; Monitoring ; Neurons ; nonintrusive load monitoring ; self-organizing map ; Training ; Vectors</subject><ispartof>IEEE transactions on smart grid, 2013-09, Vol.4 (3), p.1371-1380</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-788e41a4c1fabadd0ab63ebbae9fc6d27d07d7a05d08ca946845b6e6bebdca873</citedby><cites>FETCH-LOGICAL-c263t-788e41a4c1fabadd0ab63ebbae9fc6d27d07d7a05d08ca946845b6e6bebdca873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6558874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6558874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Du</creatorcontrib><creatorcontrib>Restrepo, Jose A.</creatorcontrib><creatorcontrib>Yi Yang</creatorcontrib><creatorcontrib>Harley, Ronald G.</creatorcontrib><creatorcontrib>Habetler, Thomas G.</creatorcontrib><title>Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PELs to handle challenges such as the diversity within each type of PELs and similarity between different types of PELs with similar front-end power supply units. Existing methods provide only absolute decisions which are not reliable when handling these challenges. This paper presents a simple yet efficient and practical hybrid supervised self-organizing map (SSOM)/Bayesian identifier for PELs. The proposed identifier can classify PELs into clusters by inherent similarities due to similar front-end power supply topologies, extract and utilize statistical information, and provide the probability of the unknown load belonging to a specific type of load. Tests based on real-world data validate that the proposed methods are accurate, robust, and applicable.</description><subject>Computers</subject><subject>Electric load identification</subject><subject>high efficiency buildings</subject><subject>Light emitting diodes</subject><subject>Monitoring</subject><subject>Neurons</subject><subject>nonintrusive load monitoring</subject><subject>self-organizing map</subject><subject>Training</subject><subject>Vectors</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkFFLwzAQx4MoOObeBV_6AdaZNG3aPsqYczDcYPO5XJJLidREkk7QT2_nxryXO47_7-B-hNwzOmOM1o_73XKWUcZnWSZ4xtkVGbE6r1NOBbu-zAW_JZMY3-lQnHOR1SPiX72zrg-HaL9wmuywM-kmtODsj3XtNAGnk23wEqTtbOytSuYdxGiNVdBb7_4CK42u_195k2y7Q9uiTlcuWXSo-jCAaw863pEbA13EybmPydvzYj9_Sdeb5Wr-tE7V8EGfllWFOYNcMQMStKYgBUcpAWujhM5KTUtdAi00rRTUuajyQgoUEqVWUJV8TOjprgo-xoCm-Qz2A8J3w2hzdNYMzpqjs-bsbEAeTohFxEtcFEVVlTn_BQoQask</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Liang Du</creator><creator>Restrepo, Jose A.</creator><creator>Yi Yang</creator><creator>Harley, Ronald G.</creator><creator>Habetler, Thomas G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130901</creationdate><title>Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads</title><author>Liang Du ; Restrepo, Jose A. ; Yi Yang ; Harley, Ronald G. ; Habetler, Thomas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-788e41a4c1fabadd0ab63ebbae9fc6d27d07d7a05d08ca946845b6e6bebdca873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computers</topic><topic>Electric load identification</topic><topic>high efficiency buildings</topic><topic>Light emitting diodes</topic><topic>Monitoring</topic><topic>Neurons</topic><topic>nonintrusive load monitoring</topic><topic>self-organizing map</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang Du</creatorcontrib><creatorcontrib>Restrepo, Jose A.</creatorcontrib><creatorcontrib>Yi Yang</creatorcontrib><creatorcontrib>Harley, Ronald G.</creatorcontrib><creatorcontrib>Habetler, Thomas G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Du</au><au>Restrepo, Jose A.</au><au>Yi Yang</au><au>Harley, Ronald G.</au><au>Habetler, Thomas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>4</volume><issue>3</issue><spage>1371</spage><epage>1380</epage><pages>1371-1380</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Electricity consumption for plugged-in electric loads (PELs) accounts for more use than any other single end-use service in residential and commercial buildings. PELs possess potentials to be efficiently managed for many purposes. However, few existing load identification methods are designed for PELs to handle challenges such as the diversity within each type of PELs and similarity between different types of PELs with similar front-end power supply units. Existing methods provide only absolute decisions which are not reliable when handling these challenges. This paper presents a simple yet efficient and practical hybrid supervised self-organizing map (SSOM)/Bayesian identifier for PELs. The proposed identifier can classify PELs into clusters by inherent similarities due to similar front-end power supply topologies, extract and utilize statistical information, and provide the probability of the unknown load belonging to a specific type of load. Tests based on real-world data validate that the proposed methods are accurate, robust, and applicable.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2013.2263231</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2013-09, Vol.4 (3), p.1371-1380
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_6558874
source IEEE Electronic Library (IEL)
subjects Computers
Electric load identification
high efficiency buildings
Light emitting diodes
Monitoring
Neurons
nonintrusive load monitoring
self-organizing map
Training
Vectors
title Nonintrusive, Self-Organizing, and Probabilistic Classification and Identification of Plugged-In Electric Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonintrusive,%20Self-Organizing,%20and%20Probabilistic%20Classification%20and%20Identification%20of%20Plugged-In%20Electric%20Loads&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Liang%20Du&rft.date=2013-09-01&rft.volume=4&rft.issue=3&rft.spage=1371&rft.epage=1380&rft.pages=1371-1380&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2013.2263231&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2013_2263231%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6558874&rfr_iscdi=true