Sample efficiency analysis of Neuroevolution algorithms on a quadruped robot

In reinforcement learning tasks with continuous state-action, parameterized policy search has been known to be a powerful method. Applying NeuroEvolution (NE) to optimizing the policy represented by artificial neural network (ANN) is a particularly active research field. In most cases, NE algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shengbo Xu, Moriguch, Hirotaka, Honiden, Shinichi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2177
container_issue
container_start_page 2170
container_title
container_volume
creator Shengbo Xu
Moriguch, Hirotaka
Honiden, Shinichi
description In reinforcement learning tasks with continuous state-action, parameterized policy search has been known to be a powerful method. Applying NeuroEvolution (NE) to optimizing the policy represented by artificial neural network (ANN) is a particularly active research field. In most cases, NE algorithms cost a large amount of trial-and-error (episode) to optimize policies. However, due to time and cost constraints, researchers and practitioners cannot repeat a number of episodes on physical robots. Thus, choosing an efficient NE algorithm is a key to optimize policies with limited time and cost. In this work, our goal is to help users to choose an efficient NE algorithm. We compare and analyze sample efficiency of two successful state-of-the-art NE algorithms: CMA-NeuroES and NEAT in a gait generation task of a quadruped robot. Moreover, we run both algorithms with various initial topologies in order to analyze the performance difference between each topology. From experimental results, we show CMA-NeuroES outperforms NEAT regardless of initial topologies when the limited number of episodes can be executed. Additional experiments conclude that the optimization method for connection weights in NEAT results in its inferior performance to CMA-NeuroES, while a probability-weighted averaging characteristic and self-adaptive factors make CMA-NeuroES to be advantageous.
doi_str_mv 10.1109/CEC.2013.6557826
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6557826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6557826</ieee_id><sourcerecordid>6557826</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2c5c2431d5ca772a0bf72b6b8416708e61a20a1c264979370144e7ac2045ca003</originalsourceid><addsrcrecordid>eNpFkM1Lw0AUxNcvsNbeBS_7D6S-t9nsyx4ltCoUPajQW3nZbnQl7cZ8CP3vDVjwNAw_GGZGiBuEOSLYu2JRzBVgOjdZRrkyJ-IKNVkLOlPrUzFBqzEBUObsH6T5-QggtwlRvr4Us677AoAxjwDSiVi98q6pvfRVFVzwe3eQvOf60IVOxko--6GN_ifWQx_iXnL9EdvQf-5GODr5PfC2HRq_lW0sY38tLiquOz876lS8LxdvxWOyenl4Ku5XSUDK-kS5zCmd4jZzTKQYyopUacpcoyHIvUFWwOiU0ZZsSoBae2Knxj2Ox9pTcfuXG7z3m6YNO24Pm-Mr6S-31FFn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sample efficiency analysis of Neuroevolution algorithms on a quadruped robot</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shengbo Xu ; Moriguch, Hirotaka ; Honiden, Shinichi</creator><creatorcontrib>Shengbo Xu ; Moriguch, Hirotaka ; Honiden, Shinichi</creatorcontrib><description>In reinforcement learning tasks with continuous state-action, parameterized policy search has been known to be a powerful method. Applying NeuroEvolution (NE) to optimizing the policy represented by artificial neural network (ANN) is a particularly active research field. In most cases, NE algorithms cost a large amount of trial-and-error (episode) to optimize policies. However, due to time and cost constraints, researchers and practitioners cannot repeat a number of episodes on physical robots. Thus, choosing an efficient NE algorithm is a key to optimize policies with limited time and cost. In this work, our goal is to help users to choose an efficient NE algorithm. We compare and analyze sample efficiency of two successful state-of-the-art NE algorithms: CMA-NeuroES and NEAT in a gait generation task of a quadruped robot. Moreover, we run both algorithms with various initial topologies in order to analyze the performance difference between each topology. From experimental results, we show CMA-NeuroES outperforms NEAT regardless of initial topologies when the limited number of episodes can be executed. Additional experiments conclude that the optimization method for connection weights in NEAT results in its inferior performance to CMA-NeuroES, while a probability-weighted averaging characteristic and self-adaptive factors make CMA-NeuroES to be advantageous.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1479904538</identifier><identifier>ISBN: 9781479904532</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 147990452X</identifier><identifier>EISBN: 9781479904525</identifier><identifier>EISBN: 9781479904549</identifier><identifier>EISBN: 1479904546</identifier><identifier>EISBN: 9781479904518</identifier><identifier>EISBN: 1479904511</identifier><identifier>DOI: 10.1109/CEC.2013.6557826</identifier><language>eng</language><publisher>IEEE</publisher><subject>CMA-NeuroES ; evolution ; Legged locomotion ; NEAT ; Network topology ; neural network ; neuroevolution ; Optimization ; Sociology ; Statistics ; Topology</subject><ispartof>2013 IEEE Congress on Evolutionary Computation, 2013, p.2170-2177</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6557826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6557826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shengbo Xu</creatorcontrib><creatorcontrib>Moriguch, Hirotaka</creatorcontrib><creatorcontrib>Honiden, Shinichi</creatorcontrib><title>Sample efficiency analysis of Neuroevolution algorithms on a quadruped robot</title><title>2013 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>In reinforcement learning tasks with continuous state-action, parameterized policy search has been known to be a powerful method. Applying NeuroEvolution (NE) to optimizing the policy represented by artificial neural network (ANN) is a particularly active research field. In most cases, NE algorithms cost a large amount of trial-and-error (episode) to optimize policies. However, due to time and cost constraints, researchers and practitioners cannot repeat a number of episodes on physical robots. Thus, choosing an efficient NE algorithm is a key to optimize policies with limited time and cost. In this work, our goal is to help users to choose an efficient NE algorithm. We compare and analyze sample efficiency of two successful state-of-the-art NE algorithms: CMA-NeuroES and NEAT in a gait generation task of a quadruped robot. Moreover, we run both algorithms with various initial topologies in order to analyze the performance difference between each topology. From experimental results, we show CMA-NeuroES outperforms NEAT regardless of initial topologies when the limited number of episodes can be executed. Additional experiments conclude that the optimization method for connection weights in NEAT results in its inferior performance to CMA-NeuroES, while a probability-weighted averaging characteristic and self-adaptive factors make CMA-NeuroES to be advantageous.</description><subject>CMA-NeuroES</subject><subject>evolution</subject><subject>Legged locomotion</subject><subject>NEAT</subject><subject>Network topology</subject><subject>neural network</subject><subject>neuroevolution</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Topology</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479904538</isbn><isbn>9781479904532</isbn><isbn>147990452X</isbn><isbn>9781479904525</isbn><isbn>9781479904549</isbn><isbn>1479904546</isbn><isbn>9781479904518</isbn><isbn>1479904511</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1Lw0AUxNcvsNbeBS_7D6S-t9nsyx4ltCoUPajQW3nZbnQl7cZ8CP3vDVjwNAw_GGZGiBuEOSLYu2JRzBVgOjdZRrkyJ-IKNVkLOlPrUzFBqzEBUObsH6T5-QggtwlRvr4Us677AoAxjwDSiVi98q6pvfRVFVzwe3eQvOf60IVOxko--6GN_ifWQx_iXnL9EdvQf-5GODr5PfC2HRq_lW0sY38tLiquOz876lS8LxdvxWOyenl4Ku5XSUDK-kS5zCmd4jZzTKQYyopUacpcoyHIvUFWwOiU0ZZsSoBae2Knxj2Ox9pTcfuXG7z3m6YNO24Pm-Mr6S-31FFn</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Shengbo Xu</creator><creator>Moriguch, Hirotaka</creator><creator>Honiden, Shinichi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Sample efficiency analysis of Neuroevolution algorithms on a quadruped robot</title><author>Shengbo Xu ; Moriguch, Hirotaka ; Honiden, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2c5c2431d5ca772a0bf72b6b8416708e61a20a1c264979370144e7ac2045ca003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CMA-NeuroES</topic><topic>evolution</topic><topic>Legged locomotion</topic><topic>NEAT</topic><topic>Network topology</topic><topic>neural network</topic><topic>neuroevolution</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shengbo Xu</creatorcontrib><creatorcontrib>Moriguch, Hirotaka</creatorcontrib><creatorcontrib>Honiden, Shinichi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shengbo Xu</au><au>Moriguch, Hirotaka</au><au>Honiden, Shinichi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sample efficiency analysis of Neuroevolution algorithms on a quadruped robot</atitle><btitle>2013 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2013-06</date><risdate>2013</risdate><spage>2170</spage><epage>2177</epage><pages>2170-2177</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1479904538</isbn><isbn>9781479904532</isbn><eisbn>147990452X</eisbn><eisbn>9781479904525</eisbn><eisbn>9781479904549</eisbn><eisbn>1479904546</eisbn><eisbn>9781479904518</eisbn><eisbn>1479904511</eisbn><abstract>In reinforcement learning tasks with continuous state-action, parameterized policy search has been known to be a powerful method. Applying NeuroEvolution (NE) to optimizing the policy represented by artificial neural network (ANN) is a particularly active research field. In most cases, NE algorithms cost a large amount of trial-and-error (episode) to optimize policies. However, due to time and cost constraints, researchers and practitioners cannot repeat a number of episodes on physical robots. Thus, choosing an efficient NE algorithm is a key to optimize policies with limited time and cost. In this work, our goal is to help users to choose an efficient NE algorithm. We compare and analyze sample efficiency of two successful state-of-the-art NE algorithms: CMA-NeuroES and NEAT in a gait generation task of a quadruped robot. Moreover, we run both algorithms with various initial topologies in order to analyze the performance difference between each topology. From experimental results, we show CMA-NeuroES outperforms NEAT regardless of initial topologies when the limited number of episodes can be executed. Additional experiments conclude that the optimization method for connection weights in NEAT results in its inferior performance to CMA-NeuroES, while a probability-weighted averaging characteristic and self-adaptive factors make CMA-NeuroES to be advantageous.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2013.6557826</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2013 IEEE Congress on Evolutionary Computation, 2013, p.2170-2177
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6557826
source IEEE Electronic Library (IEL) Conference Proceedings
subjects CMA-NeuroES
evolution
Legged locomotion
NEAT
Network topology
neural network
neuroevolution
Optimization
Sociology
Statistics
Topology
title Sample efficiency analysis of Neuroevolution algorithms on a quadruped robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sample%20efficiency%20analysis%20of%20Neuroevolution%20algorithms%20on%20a%20quadruped%20robot&rft.btitle=2013%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Shengbo%20Xu&rft.date=2013-06&rft.spage=2170&rft.epage=2177&rft.pages=2170-2177&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1479904538&rft.isbn_list=9781479904532&rft_id=info:doi/10.1109/CEC.2013.6557826&rft_dat=%3Cieee_6IE%3E6557826%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=147990452X&rft.eisbn_list=9781479904525&rft.eisbn_list=9781479904549&rft.eisbn_list=1479904546&rft.eisbn_list=9781479904518&rft.eisbn_list=1479904511&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6557826&rfr_iscdi=true