Vortex Particle Swarm Optimization

This paper presents an optimization algorithm based on self-propelled particle swarms which exploit vorticity features in order to avoid local minima; the proposed algorithm is termed Vortex Particle Swarm Optimization (VPSO). The optimization algorithm switches between translational and dispersion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Espitia, Helbert Eduardo, Sofrony, Jorge Ivan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1998
container_issue
container_start_page 1992
container_title
container_volume
creator Espitia, Helbert Eduardo
Sofrony, Jorge Ivan
description This paper presents an optimization algorithm based on self-propelled particle swarms which exploit vorticity features in order to avoid local minima; the proposed algorithm is termed Vortex Particle Swarm Optimization (VPSO). The optimization algorithm switches between translational and dispersion behavior of the swarm to enhance the exploration of the search space and to avoid getting trapped in local minima. These two types of behavior are induced by choosing the swarm as a collection of coupled, second-order oscillators where it is possible, via suitable parameter selection to switch between translational (convergence) and vortex-like movements (dispersion). This idea mimics living organism strategies such as foraging and predator avoidance. Performance of the algorithm is studied via simulation results of well-known 2D test functions.
doi_str_mv 10.1109/CEC.2013.6557803
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6557803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6557803</ieee_id><sourcerecordid>6557803</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aa39be32138c7046e0b0c35bc5a176fb484550b24787bc1a18ba55a29fcf49f33</originalsourceid><addsrcrecordid>eNpFj8tKAzEUQOMLrLV7wc3gPuO9uckkWcpQbaFQwQfdlZuQgUjHlpkBH1_fggVXZ3HgwBHiBqFEBH9fT-tSAVJZGWMd0Im4Qm29B23U6lSM0GuUAKo6-xfkzg8CnJfWutWlmPT9BwAcehaARuLufdsN6bt45m7IcZOKly_u2mK5G3Kbf3nI289rcdHwpk-TI8fi7XH6Ws_kYvk0rx8WMqM1g2QmHxIpJBct6CpBgEgmRMNoqyZop42BoLR1NkRkdIGNYeWb2GjfEI3F7V83p5TWuy633P2sj6-0ByooQj8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vortex Particle Swarm Optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Espitia, Helbert Eduardo ; Sofrony, Jorge Ivan</creator><creatorcontrib>Espitia, Helbert Eduardo ; Sofrony, Jorge Ivan</creatorcontrib><description>This paper presents an optimization algorithm based on self-propelled particle swarms which exploit vorticity features in order to avoid local minima; the proposed algorithm is termed Vortex Particle Swarm Optimization (VPSO). The optimization algorithm switches between translational and dispersion behavior of the swarm to enhance the exploration of the search space and to avoid getting trapped in local minima. These two types of behavior are induced by choosing the swarm as a collection of coupled, second-order oscillators where it is possible, via suitable parameter selection to switch between translational (convergence) and vortex-like movements (dispersion). This idea mimics living organism strategies such as foraging and predator avoidance. Performance of the algorithm is studied via simulation results of well-known 2D test functions.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1479904538</identifier><identifier>ISBN: 9781479904532</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 147990452X</identifier><identifier>EISBN: 9781479904525</identifier><identifier>EISBN: 9781479904549</identifier><identifier>EISBN: 1479904546</identifier><identifier>EISBN: 9781479904518</identifier><identifier>EISBN: 1479904511</identifier><identifier>DOI: 10.1109/CEC.2013.6557803</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bio-inspired optimization ; Dispersion ; Equations ; Force ; Linear programming ; Mathematical model ; Optimization ; Particle swarm optimization ; PSO ; vortex behavior</subject><ispartof>2013 IEEE Congress on Evolutionary Computation, 2013, p.1992-1998</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6557803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6557803$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Espitia, Helbert Eduardo</creatorcontrib><creatorcontrib>Sofrony, Jorge Ivan</creatorcontrib><title>Vortex Particle Swarm Optimization</title><title>2013 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper presents an optimization algorithm based on self-propelled particle swarms which exploit vorticity features in order to avoid local minima; the proposed algorithm is termed Vortex Particle Swarm Optimization (VPSO). The optimization algorithm switches between translational and dispersion behavior of the swarm to enhance the exploration of the search space and to avoid getting trapped in local minima. These two types of behavior are induced by choosing the swarm as a collection of coupled, second-order oscillators where it is possible, via suitable parameter selection to switch between translational (convergence) and vortex-like movements (dispersion). This idea mimics living organism strategies such as foraging and predator avoidance. Performance of the algorithm is studied via simulation results of well-known 2D test functions.</description><subject>Bio-inspired optimization</subject><subject>Dispersion</subject><subject>Equations</subject><subject>Force</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>PSO</subject><subject>vortex behavior</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479904538</isbn><isbn>9781479904532</isbn><isbn>147990452X</isbn><isbn>9781479904525</isbn><isbn>9781479904549</isbn><isbn>1479904546</isbn><isbn>9781479904518</isbn><isbn>1479904511</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8tKAzEUQOMLrLV7wc3gPuO9uckkWcpQbaFQwQfdlZuQgUjHlpkBH1_fggVXZ3HgwBHiBqFEBH9fT-tSAVJZGWMd0Im4Qm29B23U6lSM0GuUAKo6-xfkzg8CnJfWutWlmPT9BwAcehaARuLufdsN6bt45m7IcZOKly_u2mK5G3Kbf3nI289rcdHwpk-TI8fi7XH6Ws_kYvk0rx8WMqM1g2QmHxIpJBct6CpBgEgmRMNoqyZop42BoLR1NkRkdIGNYeWb2GjfEI3F7V83p5TWuy633P2sj6-0ByooQj8</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Espitia, Helbert Eduardo</creator><creator>Sofrony, Jorge Ivan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Vortex Particle Swarm Optimization</title><author>Espitia, Helbert Eduardo ; Sofrony, Jorge Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aa39be32138c7046e0b0c35bc5a176fb484550b24787bc1a18ba55a29fcf49f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bio-inspired optimization</topic><topic>Dispersion</topic><topic>Equations</topic><topic>Force</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>PSO</topic><topic>vortex behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espitia, Helbert Eduardo</creatorcontrib><creatorcontrib>Sofrony, Jorge Ivan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Espitia, Helbert Eduardo</au><au>Sofrony, Jorge Ivan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vortex Particle Swarm Optimization</atitle><btitle>2013 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2013-06</date><risdate>2013</risdate><spage>1992</spage><epage>1998</epage><pages>1992-1998</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1479904538</isbn><isbn>9781479904532</isbn><eisbn>147990452X</eisbn><eisbn>9781479904525</eisbn><eisbn>9781479904549</eisbn><eisbn>1479904546</eisbn><eisbn>9781479904518</eisbn><eisbn>1479904511</eisbn><abstract>This paper presents an optimization algorithm based on self-propelled particle swarms which exploit vorticity features in order to avoid local minima; the proposed algorithm is termed Vortex Particle Swarm Optimization (VPSO). The optimization algorithm switches between translational and dispersion behavior of the swarm to enhance the exploration of the search space and to avoid getting trapped in local minima. These two types of behavior are induced by choosing the swarm as a collection of coupled, second-order oscillators where it is possible, via suitable parameter selection to switch between translational (convergence) and vortex-like movements (dispersion). This idea mimics living organism strategies such as foraging and predator avoidance. Performance of the algorithm is studied via simulation results of well-known 2D test functions.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2013.6557803</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2013 IEEE Congress on Evolutionary Computation, 2013, p.1992-1998
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6557803
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bio-inspired optimization
Dispersion
Equations
Force
Linear programming
Mathematical model
Optimization
Particle swarm optimization
PSO
vortex behavior
title Vortex Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vortex%20Particle%20Swarm%20Optimization&rft.btitle=2013%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Espitia,%20Helbert%20Eduardo&rft.date=2013-06&rft.spage=1992&rft.epage=1998&rft.pages=1992-1998&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1479904538&rft.isbn_list=9781479904532&rft_id=info:doi/10.1109/CEC.2013.6557803&rft_dat=%3Cieee_6IE%3E6557803%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=147990452X&rft.eisbn_list=9781479904525&rft.eisbn_list=9781479904549&rft.eisbn_list=1479904546&rft.eisbn_list=9781479904518&rft.eisbn_list=1479904511&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6557803&rfr_iscdi=true