Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells

Recently, several parameters relevant for modeling crystalline silicon solar cells were improved or revised, e.g., the international standard solar spectrum or properties of silicon such as the intrinsic recombination rate and the intrinsic carrier concentration. In this study, we analyzed the influ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2013-10, Vol.3 (4), p.1184-1191
Hauptverfasser: Richter, Armin, Hermle, Martin, Glunz, Stefan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, several parameters relevant for modeling crystalline silicon solar cells were improved or revised, e.g., the international standard solar spectrum or properties of silicon such as the intrinsic recombination rate and the intrinsic carrier concentration. In this study, we analyzed the influence of these improved state-of-the-art parameters on the limiting efficiency for crystalline silicon solar cells under 1-sun illumination at 25°C, by following the narrow-base approximation to model ideal solar cells. We also considered bandgap narrowing, which was not addressed so far with respect to efficiency limitation. The new calculations that are presented in this study result in a maximum theoretical efficiency of 29.43% for a 110-μm-thick solar cell made of undoped silicon. A systematic calculation of the I-V parameters as a function of the doping concentration and the cell thickness together with an analysis of the loss current at maximum power point provides further insight into the intrinsic limitations of silicon solar cells.
ISSN:2156-3381
2156-3403
DOI:10.1109/JPHOTOV.2013.2270351