Efficient GRAPPA reconstruction using random projection

As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jingyuan Lyu, Yuchou Chang, Ying, Leslie
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue
container_start_page 700
container_title
container_volume
creator Jingyuan Lyu
Yuchou Chang
Ying, Leslie
description As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.
doi_str_mv 10.1109/ISBI.2013.6556571
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6556571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6556571</ieee_id><sourcerecordid>6556571</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1654fb268bc50dc5a142e7252627e6967663e52fccbf984e0957a670618812ce3</originalsourceid><addsrcrecordid>eNpFkMtqwzAURNUXNE3zAaUb_4BTXUn3Slq6IU0NgYY-oLtgK1JRaOwgO4v-fUJr6GpgDhyGYewO-BSA24fy7bGcCg5ySoiEGs7YDSjSkhTi5zkbgVWYG4Xi4h-QuRyAtsJcs0nXbTnnJyEByBHT8xCii77ps8VrsVoVWfKubbo-HVwf2yY7dLH5ylLVbNpdtk_t1v_2t-wqVN-dnww5Zh9P8_fZc758WZSzYplH0NjnQKhCLcjUDvnGYQVKeC1QkNCeLGki6VEE5-pgjfLcoq5In8YZA8J5OWb3f97ovV_vU9xV6Wc9HCCPFrtJdw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient GRAPPA reconstruction using random projection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jingyuan Lyu ; Yuchou Chang ; Ying, Leslie</creator><creatorcontrib>Jingyuan Lyu ; Yuchou Chang ; Ying, Leslie</creatorcontrib><description>As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1467364568</identifier><identifier>ISBN: 9781467364560</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 146736455X</identifier><identifier>EISBN: 9781467364553</identifier><identifier>EISBN: 9781467364546</identifier><identifier>EISBN: 1467364541</identifier><identifier>DOI: 10.1109/ISBI.2013.6556571</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Calibration ; Coils ; Dimension Reduction ; Equations ; GRAPPA ; Image reconstruction ; Imaging ; Mathematical model ; Random Projection ; Restricted Isometry Property</subject><ispartof>2013 IEEE 10th International Symposium on Biomedical Imaging, 2013, p.700-703</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6556571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6556571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jingyuan Lyu</creatorcontrib><creatorcontrib>Yuchou Chang</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><title>Efficient GRAPPA reconstruction using random projection</title><title>2013 IEEE 10th International Symposium on Biomedical Imaging</title><addtitle>ISBI</addtitle><description>As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.</description><subject>Arrays</subject><subject>Calibration</subject><subject>Coils</subject><subject>Dimension Reduction</subject><subject>Equations</subject><subject>GRAPPA</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Mathematical model</subject><subject>Random Projection</subject><subject>Restricted Isometry Property</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1467364568</isbn><isbn>9781467364560</isbn><isbn>146736455X</isbn><isbn>9781467364553</isbn><isbn>9781467364546</isbn><isbn>1467364541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtqwzAURNUXNE3zAaUb_4BTXUn3Slq6IU0NgYY-oLtgK1JRaOwgO4v-fUJr6GpgDhyGYewO-BSA24fy7bGcCg5ySoiEGs7YDSjSkhTi5zkbgVWYG4Xi4h-QuRyAtsJcs0nXbTnnJyEByBHT8xCii77ps8VrsVoVWfKubbo-HVwf2yY7dLH5ylLVbNpdtk_t1v_2t-wqVN-dnww5Zh9P8_fZc758WZSzYplH0NjnQKhCLcjUDvnGYQVKeC1QkNCeLGki6VEE5-pgjfLcoq5In8YZA8J5OWb3f97ovV_vU9xV6Wc9HCCPFrtJdw</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Jingyuan Lyu</creator><creator>Yuchou Chang</creator><creator>Ying, Leslie</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Efficient GRAPPA reconstruction using random projection</title><author>Jingyuan Lyu ; Yuchou Chang ; Ying, Leslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1654fb268bc50dc5a142e7252627e6967663e52fccbf984e0957a670618812ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Calibration</topic><topic>Coils</topic><topic>Dimension Reduction</topic><topic>Equations</topic><topic>GRAPPA</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Mathematical model</topic><topic>Random Projection</topic><topic>Restricted Isometry Property</topic><toplevel>online_resources</toplevel><creatorcontrib>Jingyuan Lyu</creatorcontrib><creatorcontrib>Yuchou Chang</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jingyuan Lyu</au><au>Yuchou Chang</au><au>Ying, Leslie</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient GRAPPA reconstruction using random projection</atitle><btitle>2013 IEEE 10th International Symposium on Biomedical Imaging</btitle><stitle>ISBI</stitle><date>2013-04</date><risdate>2013</risdate><spage>700</spage><epage>703</epage><pages>700-703</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1467364568</isbn><isbn>9781467364560</isbn><eisbn>146736455X</eisbn><eisbn>9781467364553</eisbn><eisbn>9781467364546</eisbn><eisbn>1467364541</eisbn><abstract>As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2013.6556571</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2013 IEEE 10th International Symposium on Biomedical Imaging, 2013, p.700-703
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_6556571
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Calibration
Coils
Dimension Reduction
Equations
GRAPPA
Image reconstruction
Imaging
Mathematical model
Random Projection
Restricted Isometry Property
title Efficient GRAPPA reconstruction using random projection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20GRAPPA%20reconstruction%20using%20random%20projection&rft.btitle=2013%20IEEE%2010th%20International%20Symposium%20on%20Biomedical%20Imaging&rft.au=Jingyuan%20Lyu&rft.date=2013-04&rft.spage=700&rft.epage=703&rft.pages=700-703&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1467364568&rft.isbn_list=9781467364560&rft_id=info:doi/10.1109/ISBI.2013.6556571&rft_dat=%3Cieee_6IE%3E6556571%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146736455X&rft.eisbn_list=9781467364553&rft.eisbn_list=9781467364546&rft.eisbn_list=1467364541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6556571&rfr_iscdi=true