Efficient GRAPPA reconstruction using random projection
As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 703 |
---|---|
container_issue | |
container_start_page | 700 |
container_title | |
container_volume | |
creator | Jingyuan Lyu Yuchou Chang Ying, Leslie |
description | As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive. |
doi_str_mv | 10.1109/ISBI.2013.6556571 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6556571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6556571</ieee_id><sourcerecordid>6556571</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1654fb268bc50dc5a142e7252627e6967663e52fccbf984e0957a670618812ce3</originalsourceid><addsrcrecordid>eNpFkMtqwzAURNUXNE3zAaUb_4BTXUn3Slq6IU0NgYY-oLtgK1JRaOwgO4v-fUJr6GpgDhyGYewO-BSA24fy7bGcCg5ySoiEGs7YDSjSkhTi5zkbgVWYG4Xi4h-QuRyAtsJcs0nXbTnnJyEByBHT8xCii77ps8VrsVoVWfKubbo-HVwf2yY7dLH5ylLVbNpdtk_t1v_2t-wqVN-dnww5Zh9P8_fZc758WZSzYplH0NjnQKhCLcjUDvnGYQVKeC1QkNCeLGki6VEE5-pgjfLcoq5In8YZA8J5OWb3f97ovV_vU9xV6Wc9HCCPFrtJdw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient GRAPPA reconstruction using random projection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jingyuan Lyu ; Yuchou Chang ; Ying, Leslie</creator><creatorcontrib>Jingyuan Lyu ; Yuchou Chang ; Ying, Leslie</creatorcontrib><description>As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1467364568</identifier><identifier>ISBN: 9781467364560</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 146736455X</identifier><identifier>EISBN: 9781467364553</identifier><identifier>EISBN: 9781467364546</identifier><identifier>EISBN: 1467364541</identifier><identifier>DOI: 10.1109/ISBI.2013.6556571</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Calibration ; Coils ; Dimension Reduction ; Equations ; GRAPPA ; Image reconstruction ; Imaging ; Mathematical model ; Random Projection ; Restricted Isometry Property</subject><ispartof>2013 IEEE 10th International Symposium on Biomedical Imaging, 2013, p.700-703</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6556571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6556571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jingyuan Lyu</creatorcontrib><creatorcontrib>Yuchou Chang</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><title>Efficient GRAPPA reconstruction using random projection</title><title>2013 IEEE 10th International Symposium on Biomedical Imaging</title><addtitle>ISBI</addtitle><description>As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.</description><subject>Arrays</subject><subject>Calibration</subject><subject>Coils</subject><subject>Dimension Reduction</subject><subject>Equations</subject><subject>GRAPPA</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Mathematical model</subject><subject>Random Projection</subject><subject>Restricted Isometry Property</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1467364568</isbn><isbn>9781467364560</isbn><isbn>146736455X</isbn><isbn>9781467364553</isbn><isbn>9781467364546</isbn><isbn>1467364541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtqwzAURNUXNE3zAaUb_4BTXUn3Slq6IU0NgYY-oLtgK1JRaOwgO4v-fUJr6GpgDhyGYewO-BSA24fy7bGcCg5ySoiEGs7YDSjSkhTi5zkbgVWYG4Xi4h-QuRyAtsJcs0nXbTnnJyEByBHT8xCii77ps8VrsVoVWfKubbo-HVwf2yY7dLH5ylLVbNpdtk_t1v_2t-wqVN-dnww5Zh9P8_fZc758WZSzYplH0NjnQKhCLcjUDvnGYQVKeC1QkNCeLGki6VEE5-pgjfLcoq5In8YZA8J5OWb3f97ovV_vU9xV6Wc9HCCPFrtJdw</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Jingyuan Lyu</creator><creator>Yuchou Chang</creator><creator>Ying, Leslie</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Efficient GRAPPA reconstruction using random projection</title><author>Jingyuan Lyu ; Yuchou Chang ; Ying, Leslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1654fb268bc50dc5a142e7252627e6967663e52fccbf984e0957a670618812ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Calibration</topic><topic>Coils</topic><topic>Dimension Reduction</topic><topic>Equations</topic><topic>GRAPPA</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Mathematical model</topic><topic>Random Projection</topic><topic>Restricted Isometry Property</topic><toplevel>online_resources</toplevel><creatorcontrib>Jingyuan Lyu</creatorcontrib><creatorcontrib>Yuchou Chang</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jingyuan Lyu</au><au>Yuchou Chang</au><au>Ying, Leslie</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient GRAPPA reconstruction using random projection</atitle><btitle>2013 IEEE 10th International Symposium on Biomedical Imaging</btitle><stitle>ISBI</stitle><date>2013-04</date><risdate>2013</risdate><spage>700</spage><epage>703</epage><pages>700-703</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1467364568</isbn><isbn>9781467364560</isbn><eisbn>146736455X</eisbn><eisbn>9781467364553</eisbn><eisbn>9781467364546</eisbn><eisbn>1467364541</eisbn><abstract>As a data-driven technique, GRAPPA has been widely used for parallel MRI reconstruction. In GRAPPA, a large amount of calibration data is desirable for accurate calibration and thus estimation. However, the computational time increases with the large number of equations to be solved, which is especially serious in 3-D reconstruction. To address this issue, a number of approaches have been developed to compress the large number of physical channels to fewer virtual channels. In this paper, we tackle the complexity problem from a different prospective. We propose to use random projections to reduce the dimension of the problem in the calibration step. Experimental results show that randomly projecting the data onto a lower-dimensional subspace yields results comparable to those of traditional GRAPPA, but is computationally significantly less expensive.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2013.6556571</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2013 IEEE 10th International Symposium on Biomedical Imaging, 2013, p.700-703 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_6556571 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arrays Calibration Coils Dimension Reduction Equations GRAPPA Image reconstruction Imaging Mathematical model Random Projection Restricted Isometry Property |
title | Efficient GRAPPA reconstruction using random projection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20GRAPPA%20reconstruction%20using%20random%20projection&rft.btitle=2013%20IEEE%2010th%20International%20Symposium%20on%20Biomedical%20Imaging&rft.au=Jingyuan%20Lyu&rft.date=2013-04&rft.spage=700&rft.epage=703&rft.pages=700-703&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1467364568&rft.isbn_list=9781467364560&rft_id=info:doi/10.1109/ISBI.2013.6556571&rft_dat=%3Cieee_6IE%3E6556571%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146736455X&rft.eisbn_list=9781467364553&rft.eisbn_list=9781467364546&rft.eisbn_list=1467364541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6556571&rfr_iscdi=true |