Semi-automated detection of single cell signatures from a dielectrophoretic cytometer

We present a semi-automated event identification method for collecting the dielectrophoretic signatures of cells flowing through a dieletrophoretic cytometer. The marker free dielectrophoresis (DEP) cytometer presented in this study is capable of detecting electronic signatures of cells which identi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rizi, Bahareh Saboktakin, Bhide, Ashlesha, Cabel, Tim, Nikolic-Jaric, Marija, Salimi, Elham, Braasch, Katrin, Butler, Michael, Bridges, Greg E., Thomson, Douglas J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1087
container_issue
container_start_page 1083
container_title
container_volume
creator Rizi, Bahareh Saboktakin
Bhide, Ashlesha
Cabel, Tim
Nikolic-Jaric, Marija
Salimi, Elham
Braasch, Katrin
Butler, Michael
Bridges, Greg E.
Thomson, Douglas J.
description We present a semi-automated event identification method for collecting the dielectrophoretic signatures of cells flowing through a dieletrophoretic cytometer. The marker free dielectrophoresis (DEP) cytometer presented in this study is capable of detecting electronic signatures of cells which identifies Claussius-Mossotti factor (CMF). The CMF can in turn be used to determine properties of the cell such as the viability. In past work the DEP cytometer signals were manually sorted by going through the entire recorded signals, which is very time-consuming. In the semi-automated method of collection, events are identified and displayed in the user interface to be accepted or rejected. We present results using semi-automated method on Hamster Chinese Ovary (CHO) cells in a batch culture and compared them with the manual analysis. The automated approach identified over 80% of the events identified manually and produced event histogram distributions nearly identical to the manual method.
doi_str_mv 10.1109/I2MTC.2013.6555581
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6555581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6555581</ieee_id><sourcerecordid>6555581</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-91797aa16630e563738b1e466bc277a7b82e3bf9cc336811fd192e204e568613</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhI0AiVLyAnDxCyR47cR2jijip1IRB8K5cpxNMUriynEPfXssUeayO9Lsp9UQcg-sAGD144a_t03BGYhCVkkaLsgtlFKJUnIhLklWK_3vobwiq3QFecU13JBsWX4YYwkkBVMr8vWJk8vNMfrJROxpjxFtdH6mfqCLm_cjUovjmPb9bOIx4EKH4CdqaO9wTNngD98-YHSW2lPCJEC4I9eDGRfMznNN2pfntnnLtx-vm-ZpmztQVcxrULUyBmT6BSsplNAdYCllZ7lSRnWao-iG2lohpAYYeqg5clamsJYg1uThD-sQcXcIbjLhtDuXIn4Bqe1Twg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semi-automated detection of single cell signatures from a dielectrophoretic cytometer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rizi, Bahareh Saboktakin ; Bhide, Ashlesha ; Cabel, Tim ; Nikolic-Jaric, Marija ; Salimi, Elham ; Braasch, Katrin ; Butler, Michael ; Bridges, Greg E. ; Thomson, Douglas J.</creator><creatorcontrib>Rizi, Bahareh Saboktakin ; Bhide, Ashlesha ; Cabel, Tim ; Nikolic-Jaric, Marija ; Salimi, Elham ; Braasch, Katrin ; Butler, Michael ; Bridges, Greg E. ; Thomson, Douglas J.</creatorcontrib><description>We present a semi-automated event identification method for collecting the dielectrophoretic signatures of cells flowing through a dieletrophoretic cytometer. The marker free dielectrophoresis (DEP) cytometer presented in this study is capable of detecting electronic signatures of cells which identifies Claussius-Mossotti factor (CMF). The CMF can in turn be used to determine properties of the cell such as the viability. In past work the DEP cytometer signals were manually sorted by going through the entire recorded signals, which is very time-consuming. In the semi-automated method of collection, events are identified and displayed in the user interface to be accepted or rejected. We present results using semi-automated method on Hamster Chinese Ovary (CHO) cells in a batch culture and compared them with the manual analysis. The automated approach identified over 80% of the events identified manually and produced event histogram distributions nearly identical to the manual method.</description><identifier>ISSN: 1091-5281</identifier><identifier>ISBN: 9781467346214</identifier><identifier>ISBN: 1467346217</identifier><identifier>EISBN: 1467346233</identifier><identifier>EISBN: 9781467346238</identifier><identifier>DOI: 10.1109/I2MTC.2013.6555581</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chinese Hamster Ovary (CHO) ; classification ; cytometer ; Dielectrophoresis ; Electric fields ; Electrodes ; Force ; Indexes ; Manuals ; microfluidic ; semi-automate ; viability</subject><ispartof>2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2013, p.1083-1087</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6555581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6555581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rizi, Bahareh Saboktakin</creatorcontrib><creatorcontrib>Bhide, Ashlesha</creatorcontrib><creatorcontrib>Cabel, Tim</creatorcontrib><creatorcontrib>Nikolic-Jaric, Marija</creatorcontrib><creatorcontrib>Salimi, Elham</creatorcontrib><creatorcontrib>Braasch, Katrin</creatorcontrib><creatorcontrib>Butler, Michael</creatorcontrib><creatorcontrib>Bridges, Greg E.</creatorcontrib><creatorcontrib>Thomson, Douglas J.</creatorcontrib><title>Semi-automated detection of single cell signatures from a dielectrophoretic cytometer</title><title>2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)</title><addtitle>I2MTC</addtitle><description>We present a semi-automated event identification method for collecting the dielectrophoretic signatures of cells flowing through a dieletrophoretic cytometer. The marker free dielectrophoresis (DEP) cytometer presented in this study is capable of detecting electronic signatures of cells which identifies Claussius-Mossotti factor (CMF). The CMF can in turn be used to determine properties of the cell such as the viability. In past work the DEP cytometer signals were manually sorted by going through the entire recorded signals, which is very time-consuming. In the semi-automated method of collection, events are identified and displayed in the user interface to be accepted or rejected. We present results using semi-automated method on Hamster Chinese Ovary (CHO) cells in a batch culture and compared them with the manual analysis. The automated approach identified over 80% of the events identified manually and produced event histogram distributions nearly identical to the manual method.</description><subject>Chinese Hamster Ovary (CHO)</subject><subject>classification</subject><subject>cytometer</subject><subject>Dielectrophoresis</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Force</subject><subject>Indexes</subject><subject>Manuals</subject><subject>microfluidic</subject><subject>semi-automate</subject><subject>viability</subject><issn>1091-5281</issn><isbn>9781467346214</isbn><isbn>1467346217</isbn><isbn>1467346233</isbn><isbn>9781467346238</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1OwzAQhI0AiVLyAnDxCyR47cR2jijip1IRB8K5cpxNMUriynEPfXssUeayO9Lsp9UQcg-sAGD144a_t03BGYhCVkkaLsgtlFKJUnIhLklWK_3vobwiq3QFecU13JBsWX4YYwkkBVMr8vWJk8vNMfrJROxpjxFtdH6mfqCLm_cjUovjmPb9bOIx4EKH4CdqaO9wTNngD98-YHSW2lPCJEC4I9eDGRfMznNN2pfntnnLtx-vm-ZpmztQVcxrULUyBmT6BSsplNAdYCllZ7lSRnWao-iG2lohpAYYeqg5clamsJYg1uThD-sQcXcIbjLhtDuXIn4Bqe1Twg</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Rizi, Bahareh Saboktakin</creator><creator>Bhide, Ashlesha</creator><creator>Cabel, Tim</creator><creator>Nikolic-Jaric, Marija</creator><creator>Salimi, Elham</creator><creator>Braasch, Katrin</creator><creator>Butler, Michael</creator><creator>Bridges, Greg E.</creator><creator>Thomson, Douglas J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201305</creationdate><title>Semi-automated detection of single cell signatures from a dielectrophoretic cytometer</title><author>Rizi, Bahareh Saboktakin ; Bhide, Ashlesha ; Cabel, Tim ; Nikolic-Jaric, Marija ; Salimi, Elham ; Braasch, Katrin ; Butler, Michael ; Bridges, Greg E. ; Thomson, Douglas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-91797aa16630e563738b1e466bc277a7b82e3bf9cc336811fd192e204e568613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chinese Hamster Ovary (CHO)</topic><topic>classification</topic><topic>cytometer</topic><topic>Dielectrophoresis</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Force</topic><topic>Indexes</topic><topic>Manuals</topic><topic>microfluidic</topic><topic>semi-automate</topic><topic>viability</topic><toplevel>online_resources</toplevel><creatorcontrib>Rizi, Bahareh Saboktakin</creatorcontrib><creatorcontrib>Bhide, Ashlesha</creatorcontrib><creatorcontrib>Cabel, Tim</creatorcontrib><creatorcontrib>Nikolic-Jaric, Marija</creatorcontrib><creatorcontrib>Salimi, Elham</creatorcontrib><creatorcontrib>Braasch, Katrin</creatorcontrib><creatorcontrib>Butler, Michael</creatorcontrib><creatorcontrib>Bridges, Greg E.</creatorcontrib><creatorcontrib>Thomson, Douglas J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rizi, Bahareh Saboktakin</au><au>Bhide, Ashlesha</au><au>Cabel, Tim</au><au>Nikolic-Jaric, Marija</au><au>Salimi, Elham</au><au>Braasch, Katrin</au><au>Butler, Michael</au><au>Bridges, Greg E.</au><au>Thomson, Douglas J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semi-automated detection of single cell signatures from a dielectrophoretic cytometer</atitle><btitle>2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)</btitle><stitle>I2MTC</stitle><date>2013-05</date><risdate>2013</risdate><spage>1083</spage><epage>1087</epage><pages>1083-1087</pages><issn>1091-5281</issn><isbn>9781467346214</isbn><isbn>1467346217</isbn><eisbn>1467346233</eisbn><eisbn>9781467346238</eisbn><abstract>We present a semi-automated event identification method for collecting the dielectrophoretic signatures of cells flowing through a dieletrophoretic cytometer. The marker free dielectrophoresis (DEP) cytometer presented in this study is capable of detecting electronic signatures of cells which identifies Claussius-Mossotti factor (CMF). The CMF can in turn be used to determine properties of the cell such as the viability. In past work the DEP cytometer signals were manually sorted by going through the entire recorded signals, which is very time-consuming. In the semi-automated method of collection, events are identified and displayed in the user interface to be accepted or rejected. We present results using semi-automated method on Hamster Chinese Ovary (CHO) cells in a batch culture and compared them with the manual analysis. The automated approach identified over 80% of the events identified manually and produced event histogram distributions nearly identical to the manual method.</abstract><pub>IEEE</pub><doi>10.1109/I2MTC.2013.6555581</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1091-5281
ispartof 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2013, p.1083-1087
issn 1091-5281
language eng
recordid cdi_ieee_primary_6555581
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chinese Hamster Ovary (CHO)
classification
cytometer
Dielectrophoresis
Electric fields
Electrodes
Force
Indexes
Manuals
microfluidic
semi-automate
viability
title Semi-automated detection of single cell signatures from a dielectrophoretic cytometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semi-automated%20detection%20of%20single%20cell%20signatures%20from%20a%20dielectrophoretic%20cytometer&rft.btitle=2013%20IEEE%20International%20Instrumentation%20and%20Measurement%20Technology%20Conference%20(I2MTC)&rft.au=Rizi,%20Bahareh%20Saboktakin&rft.date=2013-05&rft.spage=1083&rft.epage=1087&rft.pages=1083-1087&rft.issn=1091-5281&rft.isbn=9781467346214&rft.isbn_list=1467346217&rft_id=info:doi/10.1109/I2MTC.2013.6555581&rft_dat=%3Cieee_6IE%3E6555581%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467346233&rft.eisbn_list=9781467346238&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6555581&rfr_iscdi=true