Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems

In very-large multiple-input multiple-output (MIMO) systems, the base station (BS) is equipped with very large number of antennas as compared to previously considered systems. There are various advantages of increasing the number of antennas, and some schemes require handling large matrices for join...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Prabhu, Hemanth, Rodrigues, Joachim, Edfors, Ove, Rusek, Fredrik
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2715
container_issue
container_start_page 2710
container_title
container_volume
creator Prabhu, Hemanth
Rodrigues, Joachim
Edfors, Ove
Rusek, Fredrik
description In very-large multiple-input multiple-output (MIMO) systems, the base station (BS) is equipped with very large number of antennas as compared to previously considered systems. There are various advantages of increasing the number of antennas, and some schemes require handling large matrices for joint processing (pre-coding) at the BS. The dirty paper coding (DPC) is an optimal pre-coding scheme and has a very high complexity. However, with increasing number of BS antennas, linear pre-coding performance tends to that of the optimal DPC. Although linear pre-coding is less complex than DPC, there is a need to compute pseudo inverses of large matrices. In this paper we present a low complexity approximation of down-link Zero Forcing (ZF) linear pre-coding for very-large multi-user MIMO systems. Approximation using a Neumann series expansion is opted for inversion of matrices over traditional exact computations, by making use of special properties of the matrices, thereby reducing the cost of hardware. With this approximation of linear pre-coding, we can significantly reduce the computational complexity for large enough systems, i.e., where we have enough BS antenna elements. For the investigated case of 8 users, we obtain 90% of the full ZF sum rate, with lower computational complexity, when the number of BS antennas per user is about 20 or more.
doi_str_mv 10.1109/WCNC.2013.6554990
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6554990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6554990</ieee_id><sourcerecordid>6554990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-affb6b99a14fe018b8305dfd4c552e9c4f19237d9cf1d079ba16b9b5b12a8ce63</originalsourceid><addsrcrecordid>eNo1kEtOwzAYhM1LopQeALHxBVz827FjL6uIR6WWbkAsK8exK0OaRHaomtsTRFmNNN9opBmE7oDOAah--CheizmjwOdSiExreoZuIJM5F5rn6hxNQAhFmAR2gWY6V_9MsctfxgThAuAazVL6pJSOnTmFbIK-Fl0X22PYmz4cHB4lhiMOzcHF5LBt9913P6K2Sdi3EY_2QGoTdw6vl-sNNk2FTdfVwZ5CfYvr0DgTcRcdsW0Vmh1OQ-rdPt2iK2_q5GYnnaL3p8e34oWsNs_LYrEilknZE-N9KUutDWTeUVCl4lRUvsqsEMxpm3nQjOeVth4qmuvSwBgvRQnMKOskn6L7v97gnNt2cRwXh-3pN_4DqRlfog</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Prabhu, Hemanth ; Rodrigues, Joachim ; Edfors, Ove ; Rusek, Fredrik</creator><creatorcontrib>Prabhu, Hemanth ; Rodrigues, Joachim ; Edfors, Ove ; Rusek, Fredrik</creatorcontrib><description>In very-large multiple-input multiple-output (MIMO) systems, the base station (BS) is equipped with very large number of antennas as compared to previously considered systems. There are various advantages of increasing the number of antennas, and some schemes require handling large matrices for joint processing (pre-coding) at the BS. The dirty paper coding (DPC) is an optimal pre-coding scheme and has a very high complexity. However, with increasing number of BS antennas, linear pre-coding performance tends to that of the optimal DPC. Although linear pre-coding is less complex than DPC, there is a need to compute pseudo inverses of large matrices. In this paper we present a low complexity approximation of down-link Zero Forcing (ZF) linear pre-coding for very-large multi-user MIMO systems. Approximation using a Neumann series expansion is opted for inversion of matrices over traditional exact computations, by making use of special properties of the matrices, thereby reducing the cost of hardware. With this approximation of linear pre-coding, we can significantly reduce the computational complexity for large enough systems, i.e., where we have enough BS antenna elements. For the investigated case of 8 users, we obtain 90% of the full ZF sum rate, with lower computational complexity, when the number of BS antennas per user is about 20 or more.</description><identifier>ISSN: 1525-3511</identifier><identifier>ISBN: 9781467359382</identifier><identifier>ISBN: 1467359386</identifier><identifier>EISSN: 1558-2612</identifier><identifier>EISBN: 1467359378</identifier><identifier>EISBN: 1467359394</identifier><identifier>EISBN: 9781467359399</identifier><identifier>EISBN: 9781467359375</identifier><identifier>DOI: 10.1109/WCNC.2013.6554990</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antennas ; Approximation methods ; Complexity theory ; Eigenvalues and eigenfunctions ; Hardware ; MIMO</subject><ispartof>2013 IEEE Wireless Communications and Networking Conference (WCNC), 2013, p.2710-2715</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-affb6b99a14fe018b8305dfd4c552e9c4f19237d9cf1d079ba16b9b5b12a8ce63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6554990$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6554990$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prabhu, Hemanth</creatorcontrib><creatorcontrib>Rodrigues, Joachim</creatorcontrib><creatorcontrib>Edfors, Ove</creatorcontrib><creatorcontrib>Rusek, Fredrik</creatorcontrib><title>Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems</title><title>2013 IEEE Wireless Communications and Networking Conference (WCNC)</title><addtitle>WCNC</addtitle><description>In very-large multiple-input multiple-output (MIMO) systems, the base station (BS) is equipped with very large number of antennas as compared to previously considered systems. There are various advantages of increasing the number of antennas, and some schemes require handling large matrices for joint processing (pre-coding) at the BS. The dirty paper coding (DPC) is an optimal pre-coding scheme and has a very high complexity. However, with increasing number of BS antennas, linear pre-coding performance tends to that of the optimal DPC. Although linear pre-coding is less complex than DPC, there is a need to compute pseudo inverses of large matrices. In this paper we present a low complexity approximation of down-link Zero Forcing (ZF) linear pre-coding for very-large multi-user MIMO systems. Approximation using a Neumann series expansion is opted for inversion of matrices over traditional exact computations, by making use of special properties of the matrices, thereby reducing the cost of hardware. With this approximation of linear pre-coding, we can significantly reduce the computational complexity for large enough systems, i.e., where we have enough BS antenna elements. For the investigated case of 8 users, we obtain 90% of the full ZF sum rate, with lower computational complexity, when the number of BS antennas per user is about 20 or more.</description><subject>Antennas</subject><subject>Approximation methods</subject><subject>Complexity theory</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Hardware</subject><subject>MIMO</subject><issn>1525-3511</issn><issn>1558-2612</issn><isbn>9781467359382</isbn><isbn>1467359386</isbn><isbn>1467359378</isbn><isbn>1467359394</isbn><isbn>9781467359399</isbn><isbn>9781467359375</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtOwzAYhM1LopQeALHxBVz827FjL6uIR6WWbkAsK8exK0OaRHaomtsTRFmNNN9opBmE7oDOAah--CheizmjwOdSiExreoZuIJM5F5rn6hxNQAhFmAR2gWY6V_9MsctfxgThAuAazVL6pJSOnTmFbIK-Fl0X22PYmz4cHB4lhiMOzcHF5LBt9913P6K2Sdi3EY_2QGoTdw6vl-sNNk2FTdfVwZ5CfYvr0DgTcRcdsW0Vmh1OQ-rdPt2iK2_q5GYnnaL3p8e34oWsNs_LYrEilknZE-N9KUutDWTeUVCl4lRUvsqsEMxpm3nQjOeVth4qmuvSwBgvRQnMKOskn6L7v97gnNt2cRwXh-3pN_4DqRlfog</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Prabhu, Hemanth</creator><creator>Rodrigues, Joachim</creator><creator>Edfors, Ove</creator><creator>Rusek, Fredrik</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20130101</creationdate><title>Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems</title><author>Prabhu, Hemanth ; Rodrigues, Joachim ; Edfors, Ove ; Rusek, Fredrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-affb6b99a14fe018b8305dfd4c552e9c4f19237d9cf1d079ba16b9b5b12a8ce63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antennas</topic><topic>Approximation methods</topic><topic>Complexity theory</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Hardware</topic><topic>MIMO</topic><toplevel>online_resources</toplevel><creatorcontrib>Prabhu, Hemanth</creatorcontrib><creatorcontrib>Rodrigues, Joachim</creatorcontrib><creatorcontrib>Edfors, Ove</creatorcontrib><creatorcontrib>Rusek, Fredrik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prabhu, Hemanth</au><au>Rodrigues, Joachim</au><au>Edfors, Ove</au><au>Rusek, Fredrik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems</atitle><btitle>2013 IEEE Wireless Communications and Networking Conference (WCNC)</btitle><stitle>WCNC</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>2710</spage><epage>2715</epage><pages>2710-2715</pages><issn>1525-3511</issn><eissn>1558-2612</eissn><isbn>9781467359382</isbn><isbn>1467359386</isbn><eisbn>1467359378</eisbn><eisbn>1467359394</eisbn><eisbn>9781467359399</eisbn><eisbn>9781467359375</eisbn><abstract>In very-large multiple-input multiple-output (MIMO) systems, the base station (BS) is equipped with very large number of antennas as compared to previously considered systems. There are various advantages of increasing the number of antennas, and some schemes require handling large matrices for joint processing (pre-coding) at the BS. The dirty paper coding (DPC) is an optimal pre-coding scheme and has a very high complexity. However, with increasing number of BS antennas, linear pre-coding performance tends to that of the optimal DPC. Although linear pre-coding is less complex than DPC, there is a need to compute pseudo inverses of large matrices. In this paper we present a low complexity approximation of down-link Zero Forcing (ZF) linear pre-coding for very-large multi-user MIMO systems. Approximation using a Neumann series expansion is opted for inversion of matrices over traditional exact computations, by making use of special properties of the matrices, thereby reducing the cost of hardware. With this approximation of linear pre-coding, we can significantly reduce the computational complexity for large enough systems, i.e., where we have enough BS antenna elements. For the investigated case of 8 users, we obtain 90% of the full ZF sum rate, with lower computational complexity, when the number of BS antennas per user is about 20 or more.</abstract><pub>IEEE</pub><doi>10.1109/WCNC.2013.6554990</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-3511
ispartof 2013 IEEE Wireless Communications and Networking Conference (WCNC), 2013, p.2710-2715
issn 1525-3511
1558-2612
language eng
recordid cdi_ieee_primary_6554990
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Antennas
Approximation methods
Complexity theory
Eigenvalues and eigenfunctions
Hardware
MIMO
title Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximative%20matrix%20inverse%20computations%20for%20very-large%20MIMO%20and%20applications%20to%20linear%20pre-coding%20systems&rft.btitle=2013%20IEEE%20Wireless%20Communications%20and%20Networking%20Conference%20(WCNC)&rft.au=Prabhu,%20Hemanth&rft.date=2013-01-01&rft.spage=2710&rft.epage=2715&rft.pages=2710-2715&rft.issn=1525-3511&rft.eissn=1558-2612&rft.isbn=9781467359382&rft.isbn_list=1467359386&rft_id=info:doi/10.1109/WCNC.2013.6554990&rft_dat=%3Cieee_6IE%3E6554990%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467359378&rft.eisbn_list=1467359394&rft.eisbn_list=9781467359399&rft.eisbn_list=9781467359375&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6554990&rfr_iscdi=true