Good coupling between LDPC-staircase and Reed-Solomon for the design of GLDPC codes for the erasure channel

In this paper we analyze the design of Generalized LDPC-staircase (GLDPC-staircase) codes, where the base code is an LDPC-Staircase code and component codes are Reed-Solomon codes. More precisely we compare two schemes: scheme A has the property that on each check node of the base code the repair sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mattoussi, Ferdaouss, Sayadi, Bessem, Roca, Vincent
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1533
container_issue
container_start_page 1528
container_title
container_volume
creator Mattoussi, Ferdaouss
Sayadi, Bessem
Roca, Vincent
description In this paper we analyze the design of Generalized LDPC-staircase (GLDPC-staircase) codes, where the base code is an LDPC-Staircase code and component codes are Reed-Solomon codes. More precisely we compare two schemes: scheme A has the property that on each check node of the base code the repair symbol generated by the LDPC code is also a Reed-Solomon repair symbol. On the opposite, with scheme B for each check node the repair symbols generated by the LDPC code are Reed-Solomon source symbols. In this work we perform a behavioral analysis of the two schemes in order to determine the best one for ITerative + Reed Solomon (IT+RS) and Maximum Likelihood (ML) decoding. To that purpose we use an asymptotic analysis using Density evolution (DE) and EXtrinsic Information Transfer techniques, as well as a finite length analysis. We show that scheme A is globally the best solution since it significantly performs better than scheme B with an (IT+RS) decoding and yields similar performance with ML decoding.
doi_str_mv 10.1109/WCNC.2013.6554790
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6554790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6554790</ieee_id><sourcerecordid>6554790</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-f16d7c3d090c06491dc1f204b2560048764687761e64708e5844dcda5cc3400d3</originalsourceid><addsrcrecordid>eNo9kNtKw0AURccbWGs_QHyZH0g9Z-55lKhVKCpe8LFMZ07aaJqRJEX8e1usPm3Yi70eNmNnCGNEyC_eivtiLADl2GitbA577ASVsVLn0rp9NkCtXSYMigM2yq37Y04cbpnQmdSIx2zUde8AsHFaQDVgH5OUIg9p_VlXzYLPqf8iavj06rHIut5XbfAdcd9E_kQUs-dUp1VqeJla3i-JR-qqRcNTySfbyUa0af4ptb5bt8TD0jcN1afsqPR1R6NdDtnrzfVLcZtNHyZ3xeU0qwS6PivRRBtkhBwCGJVjDFgKUHOhDYBy1ijjrDVIRllwpJ1SMUSvQ5AKIMohO__1VkQ0-2yrlW-_Z7vf5A8881s4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Good coupling between LDPC-staircase and Reed-Solomon for the design of GLDPC codes for the erasure channel</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mattoussi, Ferdaouss ; Sayadi, Bessem ; Roca, Vincent</creator><creatorcontrib>Mattoussi, Ferdaouss ; Sayadi, Bessem ; Roca, Vincent</creatorcontrib><description>In this paper we analyze the design of Generalized LDPC-staircase (GLDPC-staircase) codes, where the base code is an LDPC-Staircase code and component codes are Reed-Solomon codes. More precisely we compare two schemes: scheme A has the property that on each check node of the base code the repair symbol generated by the LDPC code is also a Reed-Solomon repair symbol. On the opposite, with scheme B for each check node the repair symbols generated by the LDPC code are Reed-Solomon source symbols. In this work we perform a behavioral analysis of the two schemes in order to determine the best one for ITerative + Reed Solomon (IT+RS) and Maximum Likelihood (ML) decoding. To that purpose we use an asymptotic analysis using Density evolution (DE) and EXtrinsic Information Transfer techniques, as well as a finite length analysis. We show that scheme A is globally the best solution since it significantly performs better than scheme B with an (IT+RS) decoding and yields similar performance with ML decoding.</description><identifier>ISSN: 1525-3511</identifier><identifier>ISBN: 9781467359382</identifier><identifier>ISBN: 1467359386</identifier><identifier>EISSN: 1558-2612</identifier><identifier>EISBN: 1467359378</identifier><identifier>EISBN: 1467359394</identifier><identifier>EISBN: 9781467359399</identifier><identifier>EISBN: 9781467359375</identifier><identifier>DOI: 10.1109/WCNC.2013.6554790</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Iterative decoding ; Maintenance engineering ; Maximum likelihood decoding ; Reed-Solomon codes</subject><ispartof>2013 IEEE Wireless Communications and Networking Conference (WCNC), 2013, p.1528-1533</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6554790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6554790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mattoussi, Ferdaouss</creatorcontrib><creatorcontrib>Sayadi, Bessem</creatorcontrib><creatorcontrib>Roca, Vincent</creatorcontrib><title>Good coupling between LDPC-staircase and Reed-Solomon for the design of GLDPC codes for the erasure channel</title><title>2013 IEEE Wireless Communications and Networking Conference (WCNC)</title><addtitle>WCNC</addtitle><description>In this paper we analyze the design of Generalized LDPC-staircase (GLDPC-staircase) codes, where the base code is an LDPC-Staircase code and component codes are Reed-Solomon codes. More precisely we compare two schemes: scheme A has the property that on each check node of the base code the repair symbol generated by the LDPC code is also a Reed-Solomon repair symbol. On the opposite, with scheme B for each check node the repair symbols generated by the LDPC code are Reed-Solomon source symbols. In this work we perform a behavioral analysis of the two schemes in order to determine the best one for ITerative + Reed Solomon (IT+RS) and Maximum Likelihood (ML) decoding. To that purpose we use an asymptotic analysis using Density evolution (DE) and EXtrinsic Information Transfer techniques, as well as a finite length analysis. We show that scheme A is globally the best solution since it significantly performs better than scheme B with an (IT+RS) decoding and yields similar performance with ML decoding.</description><subject>Equations</subject><subject>Iterative decoding</subject><subject>Maintenance engineering</subject><subject>Maximum likelihood decoding</subject><subject>Reed-Solomon codes</subject><issn>1525-3511</issn><issn>1558-2612</issn><isbn>9781467359382</isbn><isbn>1467359386</isbn><isbn>1467359378</isbn><isbn>1467359394</isbn><isbn>9781467359399</isbn><isbn>9781467359375</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKw0AURccbWGs_QHyZH0g9Z-55lKhVKCpe8LFMZ07aaJqRJEX8e1usPm3Yi70eNmNnCGNEyC_eivtiLADl2GitbA577ASVsVLn0rp9NkCtXSYMigM2yq37Y04cbpnQmdSIx2zUde8AsHFaQDVgH5OUIg9p_VlXzYLPqf8iavj06rHIut5XbfAdcd9E_kQUs-dUp1VqeJla3i-JR-qqRcNTySfbyUa0af4ptb5bt8TD0jcN1afsqPR1R6NdDtnrzfVLcZtNHyZ3xeU0qwS6PivRRBtkhBwCGJVjDFgKUHOhDYBy1ijjrDVIRllwpJ1SMUSvQ5AKIMohO__1VkQ0-2yrlW-_Z7vf5A8881s4</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Mattoussi, Ferdaouss</creator><creator>Sayadi, Bessem</creator><creator>Roca, Vincent</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Good coupling between LDPC-staircase and Reed-Solomon for the design of GLDPC codes for the erasure channel</title><author>Mattoussi, Ferdaouss ; Sayadi, Bessem ; Roca, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-f16d7c3d090c06491dc1f204b2560048764687761e64708e5844dcda5cc3400d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Equations</topic><topic>Iterative decoding</topic><topic>Maintenance engineering</topic><topic>Maximum likelihood decoding</topic><topic>Reed-Solomon codes</topic><toplevel>online_resources</toplevel><creatorcontrib>Mattoussi, Ferdaouss</creatorcontrib><creatorcontrib>Sayadi, Bessem</creatorcontrib><creatorcontrib>Roca, Vincent</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mattoussi, Ferdaouss</au><au>Sayadi, Bessem</au><au>Roca, Vincent</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Good coupling between LDPC-staircase and Reed-Solomon for the design of GLDPC codes for the erasure channel</atitle><btitle>2013 IEEE Wireless Communications and Networking Conference (WCNC)</btitle><stitle>WCNC</stitle><date>2013-04</date><risdate>2013</risdate><spage>1528</spage><epage>1533</epage><pages>1528-1533</pages><issn>1525-3511</issn><eissn>1558-2612</eissn><isbn>9781467359382</isbn><isbn>1467359386</isbn><eisbn>1467359378</eisbn><eisbn>1467359394</eisbn><eisbn>9781467359399</eisbn><eisbn>9781467359375</eisbn><abstract>In this paper we analyze the design of Generalized LDPC-staircase (GLDPC-staircase) codes, where the base code is an LDPC-Staircase code and component codes are Reed-Solomon codes. More precisely we compare two schemes: scheme A has the property that on each check node of the base code the repair symbol generated by the LDPC code is also a Reed-Solomon repair symbol. On the opposite, with scheme B for each check node the repair symbols generated by the LDPC code are Reed-Solomon source symbols. In this work we perform a behavioral analysis of the two schemes in order to determine the best one for ITerative + Reed Solomon (IT+RS) and Maximum Likelihood (ML) decoding. To that purpose we use an asymptotic analysis using Density evolution (DE) and EXtrinsic Information Transfer techniques, as well as a finite length analysis. We show that scheme A is globally the best solution since it significantly performs better than scheme B with an (IT+RS) decoding and yields similar performance with ML decoding.</abstract><pub>IEEE</pub><doi>10.1109/WCNC.2013.6554790</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-3511
ispartof 2013 IEEE Wireless Communications and Networking Conference (WCNC), 2013, p.1528-1533
issn 1525-3511
1558-2612
language eng
recordid cdi_ieee_primary_6554790
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Iterative decoding
Maintenance engineering
Maximum likelihood decoding
Reed-Solomon codes
title Good coupling between LDPC-staircase and Reed-Solomon for the design of GLDPC codes for the erasure channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Good%20coupling%20between%20LDPC-staircase%20and%20Reed-Solomon%20for%20the%20design%20of%20GLDPC%20codes%20for%20the%20erasure%20channel&rft.btitle=2013%20IEEE%20Wireless%20Communications%20and%20Networking%20Conference%20(WCNC)&rft.au=Mattoussi,%20Ferdaouss&rft.date=2013-04&rft.spage=1528&rft.epage=1533&rft.pages=1528-1533&rft.issn=1525-3511&rft.eissn=1558-2612&rft.isbn=9781467359382&rft.isbn_list=1467359386&rft_id=info:doi/10.1109/WCNC.2013.6554790&rft_dat=%3Cieee_6IE%3E6554790%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467359378&rft.eisbn_list=1467359394&rft.eisbn_list=9781467359399&rft.eisbn_list=9781467359375&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6554790&rfr_iscdi=true