Good coupling between LDPC-staircase and Reed-Solomon for the design of GLDPC codes for the erasure channel
In this paper we analyze the design of Generalized LDPC-staircase (GLDPC-staircase) codes, where the base code is an LDPC-Staircase code and component codes are Reed-Solomon codes. More precisely we compare two schemes: scheme A has the property that on each check node of the base code the repair sy...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we analyze the design of Generalized LDPC-staircase (GLDPC-staircase) codes, where the base code is an LDPC-Staircase code and component codes are Reed-Solomon codes. More precisely we compare two schemes: scheme A has the property that on each check node of the base code the repair symbol generated by the LDPC code is also a Reed-Solomon repair symbol. On the opposite, with scheme B for each check node the repair symbols generated by the LDPC code are Reed-Solomon source symbols. In this work we perform a behavioral analysis of the two schemes in order to determine the best one for ITerative + Reed Solomon (IT+RS) and Maximum Likelihood (ML) decoding. To that purpose we use an asymptotic analysis using Density evolution (DE) and EXtrinsic Information Transfer techniques, as well as a finite length analysis. We show that scheme A is globally the best solution since it significantly performs better than scheme B with an (IT+RS) decoding and yields similar performance with ML decoding. |
---|---|
ISSN: | 1525-3511 1558-2612 |
DOI: | 10.1109/WCNC.2013.6554790 |