Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction
Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2013-12, Vol.14 (4), p.1700-1707 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1707 |
---|---|
container_issue | 4 |
container_start_page | 1700 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 14 |
creator | Young-Seon Jeong Young-Ji Byon Mendonca Castro-Neto, Manoel Easa, Said M. |
description | Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predicting short-term traffic flows, recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words, the relative significance depending on the time difference between traffic flow data should be considered. Although there have been several research works for short-term traffic flow predictions, they are offline methods. This paper presents a novel prediction model, called online learning weighted support-vector regression (OLWSVR), for short-term traffic flow predictions. The OLWSVR model is compared with several well-known prediction models, including artificial neural network models, locally weighted regression, conventional support-vector regression, and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models. |
doi_str_mv | 10.1109/TITS.2013.2267735 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6553284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6553284</ieee_id><sourcerecordid>10_1109_TITS_2013_2267735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-bfb11b7c77c9ff9c449aeb87255483ded011001c50e4b8f6cb792a36a636c5e03</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQhRdRsFYfQLzZF9i6_5tclmK1UKjQFC_DZjObrKRJ2UTFtzehxas5czhnYD6EHhldMEbT52yT7RecMrHgXBsj1BWaMaUSQinT15PmkqRU0Vt01_efoysVYzN02H-dIH6HHkr8AaGqh9BWZNc2oQW8BRvbccfLpupiGOoj9l3E-7qLA8kgHnEWrffB4XXT_eD3CGVwQ-jae3TjbdPDw2XO0WH9kq3eyHb3ulktt8RxrQZS-IKxwjhjXOp96qRMLRSJ4UrJRJRQ0vE3ypyiIIvEa1eYlFuhrRbaKaBijtj5rotd30fw-SmGo42_OaP5xCWfuOQTl_zCZew8nTsBAP7zWinBEyn-AJHqX-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Young-Seon Jeong ; Young-Ji Byon ; Mendonca Castro-Neto, Manoel ; Easa, Said M.</creator><creatorcontrib>Young-Seon Jeong ; Young-Ji Byon ; Mendonca Castro-Neto, Manoel ; Easa, Said M.</creatorcontrib><description>Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predicting short-term traffic flows, recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words, the relative significance depending on the time difference between traffic flow data should be considered. Although there have been several research works for short-term traffic flow predictions, they are offline methods. This paper presents a novel prediction model, called online learning weighted support-vector regression (OLWSVR), for short-term traffic flow predictions. The OLWSVR model is compared with several well-known prediction models, including artificial neural network models, locally weighted regression, conventional support-vector regression, and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2013.2267735</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data models ; Intelligent transportation systems (ITSs) ; online learning weighted support-vector regression (OLWSVR) ; Prediction algorithms ; Predictive models ; short-term traffic flow forecast ; supervised algorithm ; Support vector machines ; Traffic control</subject><ispartof>IEEE transactions on intelligent transportation systems, 2013-12, Vol.14 (4), p.1700-1707</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-bfb11b7c77c9ff9c449aeb87255483ded011001c50e4b8f6cb792a36a636c5e03</citedby><cites>FETCH-LOGICAL-c265t-bfb11b7c77c9ff9c449aeb87255483ded011001c50e4b8f6cb792a36a636c5e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6553284$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6553284$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Young-Seon Jeong</creatorcontrib><creatorcontrib>Young-Ji Byon</creatorcontrib><creatorcontrib>Mendonca Castro-Neto, Manoel</creatorcontrib><creatorcontrib>Easa, Said M.</creatorcontrib><title>Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predicting short-term traffic flows, recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words, the relative significance depending on the time difference between traffic flow data should be considered. Although there have been several research works for short-term traffic flow predictions, they are offline methods. This paper presents a novel prediction model, called online learning weighted support-vector regression (OLWSVR), for short-term traffic flow predictions. The OLWSVR model is compared with several well-known prediction models, including artificial neural network models, locally weighted regression, conventional support-vector regression, and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models.</description><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Intelligent transportation systems (ITSs)</subject><subject>online learning weighted support-vector regression (OLWSVR)</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>short-term traffic flow forecast</subject><subject>supervised algorithm</subject><subject>Support vector machines</subject><subject>Traffic control</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1Kw0AQhRdRsFYfQLzZF9i6_5tclmK1UKjQFC_DZjObrKRJ2UTFtzehxas5czhnYD6EHhldMEbT52yT7RecMrHgXBsj1BWaMaUSQinT15PmkqRU0Vt01_efoysVYzN02H-dIH6HHkr8AaGqh9BWZNc2oQW8BRvbccfLpupiGOoj9l3E-7qLA8kgHnEWrffB4XXT_eD3CGVwQ-jae3TjbdPDw2XO0WH9kq3eyHb3ulktt8RxrQZS-IKxwjhjXOp96qRMLRSJ4UrJRJRQ0vE3ypyiIIvEa1eYlFuhrRbaKaBijtj5rotd30fw-SmGo42_OaP5xCWfuOQTl_zCZew8nTsBAP7zWinBEyn-AJHqX-I</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Young-Seon Jeong</creator><creator>Young-Ji Byon</creator><creator>Mendonca Castro-Neto, Manoel</creator><creator>Easa, Said M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201312</creationdate><title>Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction</title><author>Young-Seon Jeong ; Young-Ji Byon ; Mendonca Castro-Neto, Manoel ; Easa, Said M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-bfb11b7c77c9ff9c449aeb87255483ded011001c50e4b8f6cb792a36a636c5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Intelligent transportation systems (ITSs)</topic><topic>online learning weighted support-vector regression (OLWSVR)</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>short-term traffic flow forecast</topic><topic>supervised algorithm</topic><topic>Support vector machines</topic><topic>Traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young-Seon Jeong</creatorcontrib><creatorcontrib>Young-Ji Byon</creatorcontrib><creatorcontrib>Mendonca Castro-Neto, Manoel</creatorcontrib><creatorcontrib>Easa, Said M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Young-Seon Jeong</au><au>Young-Ji Byon</au><au>Mendonca Castro-Neto, Manoel</au><au>Easa, Said M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2013-12</date><risdate>2013</risdate><volume>14</volume><issue>4</issue><spage>1700</spage><epage>1707</epage><pages>1700-1707</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predicting short-term traffic flows, recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words, the relative significance depending on the time difference between traffic flow data should be considered. Although there have been several research works for short-term traffic flow predictions, they are offline methods. This paper presents a novel prediction model, called online learning weighted support-vector regression (OLWSVR), for short-term traffic flow predictions. The OLWSVR model is compared with several well-known prediction models, including artificial neural network models, locally weighted regression, conventional support-vector regression, and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2013.2267735</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2013-12, Vol.14 (4), p.1700-1707 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_6553284 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Data models Intelligent transportation systems (ITSs) online learning weighted support-vector regression (OLWSVR) Prediction algorithms Predictive models short-term traffic flow forecast supervised algorithm Support vector machines Traffic control |
title | Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Weighting-Online%20Learning%20Algorithm%20for%20Short-Term%20Traffic%20Flow%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Young-Seon%20Jeong&rft.date=2013-12&rft.volume=14&rft.issue=4&rft.spage=1700&rft.epage=1707&rft.pages=1700-1707&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2013.2267735&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2013_2267735%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6553284&rfr_iscdi=true |