Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction

Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2013-12, Vol.14 (4), p.1700-1707
Hauptverfasser: Young-Seon Jeong, Young-Ji Byon, Mendonca Castro-Neto, Manoel, Easa, Said M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1707
container_issue 4
container_start_page 1700
container_title IEEE transactions on intelligent transportation systems
container_volume 14
creator Young-Seon Jeong
Young-Ji Byon
Mendonca Castro-Neto, Manoel
Easa, Said M.
description Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predicting short-term traffic flows, recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words, the relative significance depending on the time difference between traffic flow data should be considered. Although there have been several research works for short-term traffic flow predictions, they are offline methods. This paper presents a novel prediction model, called online learning weighted support-vector regression (OLWSVR), for short-term traffic flow predictions. The OLWSVR model is compared with several well-known prediction models, including artificial neural network models, locally weighted regression, conventional support-vector regression, and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models.
doi_str_mv 10.1109/TITS.2013.2267735
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6553284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6553284</ieee_id><sourcerecordid>10_1109_TITS_2013_2267735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-bfb11b7c77c9ff9c449aeb87255483ded011001c50e4b8f6cb792a36a636c5e03</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQhRdRsFYfQLzZF9i6_5tclmK1UKjQFC_DZjObrKRJ2UTFtzehxas5czhnYD6EHhldMEbT52yT7RecMrHgXBsj1BWaMaUSQinT15PmkqRU0Vt01_efoysVYzN02H-dIH6HHkr8AaGqh9BWZNc2oQW8BRvbccfLpupiGOoj9l3E-7qLA8kgHnEWrffB4XXT_eD3CGVwQ-jae3TjbdPDw2XO0WH9kq3eyHb3ulktt8RxrQZS-IKxwjhjXOp96qRMLRSJ4UrJRJRQ0vE3ypyiIIvEa1eYlFuhrRbaKaBijtj5rotd30fw-SmGo42_OaP5xCWfuOQTl_zCZew8nTsBAP7zWinBEyn-AJHqX-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Young-Seon Jeong ; Young-Ji Byon ; Mendonca Castro-Neto, Manoel ; Easa, Said M.</creator><creatorcontrib>Young-Seon Jeong ; Young-Ji Byon ; Mendonca Castro-Neto, Manoel ; Easa, Said M.</creatorcontrib><description>Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predicting short-term traffic flows, recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words, the relative significance depending on the time difference between traffic flow data should be considered. Although there have been several research works for short-term traffic flow predictions, they are offline methods. This paper presents a novel prediction model, called online learning weighted support-vector regression (OLWSVR), for short-term traffic flow predictions. The OLWSVR model is compared with several well-known prediction models, including artificial neural network models, locally weighted regression, conventional support-vector regression, and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2013.2267735</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data models ; Intelligent transportation systems (ITSs) ; online learning weighted support-vector regression (OLWSVR) ; Prediction algorithms ; Predictive models ; short-term traffic flow forecast ; supervised algorithm ; Support vector machines ; Traffic control</subject><ispartof>IEEE transactions on intelligent transportation systems, 2013-12, Vol.14 (4), p.1700-1707</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-bfb11b7c77c9ff9c449aeb87255483ded011001c50e4b8f6cb792a36a636c5e03</citedby><cites>FETCH-LOGICAL-c265t-bfb11b7c77c9ff9c449aeb87255483ded011001c50e4b8f6cb792a36a636c5e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6553284$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6553284$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Young-Seon Jeong</creatorcontrib><creatorcontrib>Young-Ji Byon</creatorcontrib><creatorcontrib>Mendonca Castro-Neto, Manoel</creatorcontrib><creatorcontrib>Easa, Said M.</creatorcontrib><title>Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predicting short-term traffic flows, recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words, the relative significance depending on the time difference between traffic flow data should be considered. Although there have been several research works for short-term traffic flow predictions, they are offline methods. This paper presents a novel prediction model, called online learning weighted support-vector regression (OLWSVR), for short-term traffic flow predictions. The OLWSVR model is compared with several well-known prediction models, including artificial neural network models, locally weighted regression, conventional support-vector regression, and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models.</description><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Intelligent transportation systems (ITSs)</subject><subject>online learning weighted support-vector regression (OLWSVR)</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>short-term traffic flow forecast</subject><subject>supervised algorithm</subject><subject>Support vector machines</subject><subject>Traffic control</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1Kw0AQhRdRsFYfQLzZF9i6_5tclmK1UKjQFC_DZjObrKRJ2UTFtzehxas5czhnYD6EHhldMEbT52yT7RecMrHgXBsj1BWaMaUSQinT15PmkqRU0Vt01_efoysVYzN02H-dIH6HHkr8AaGqh9BWZNc2oQW8BRvbccfLpupiGOoj9l3E-7qLA8kgHnEWrffB4XXT_eD3CGVwQ-jae3TjbdPDw2XO0WH9kq3eyHb3ulktt8RxrQZS-IKxwjhjXOp96qRMLRSJ4UrJRJRQ0vE3ypyiIIvEa1eYlFuhrRbaKaBijtj5rotd30fw-SmGo42_OaP5xCWfuOQTl_zCZew8nTsBAP7zWinBEyn-AJHqX-I</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Young-Seon Jeong</creator><creator>Young-Ji Byon</creator><creator>Mendonca Castro-Neto, Manoel</creator><creator>Easa, Said M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201312</creationdate><title>Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction</title><author>Young-Seon Jeong ; Young-Ji Byon ; Mendonca Castro-Neto, Manoel ; Easa, Said M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-bfb11b7c77c9ff9c449aeb87255483ded011001c50e4b8f6cb792a36a636c5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Intelligent transportation systems (ITSs)</topic><topic>online learning weighted support-vector regression (OLWSVR)</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>short-term traffic flow forecast</topic><topic>supervised algorithm</topic><topic>Support vector machines</topic><topic>Traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young-Seon Jeong</creatorcontrib><creatorcontrib>Young-Ji Byon</creatorcontrib><creatorcontrib>Mendonca Castro-Neto, Manoel</creatorcontrib><creatorcontrib>Easa, Said M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Young-Seon Jeong</au><au>Young-Ji Byon</au><au>Mendonca Castro-Neto, Manoel</au><au>Easa, Said M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2013-12</date><risdate>2013</risdate><volume>14</volume><issue>4</issue><spage>1700</spage><epage>1707</epage><pages>1700-1707</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Prediction of short-term traffic flow has become one of the major research fields in intelligent transportation systems. Accurately estimated traffic flow forecasts are important for operating effective and proactive traffic management systems in the context of dynamic traffic assignment. For predicting short-term traffic flows, recent traffic information is clearly a more significant indicator of the near-future traffic flow. In other words, the relative significance depending on the time difference between traffic flow data should be considered. Although there have been several research works for short-term traffic flow predictions, they are offline methods. This paper presents a novel prediction model, called online learning weighted support-vector regression (OLWSVR), for short-term traffic flow predictions. The OLWSVR model is compared with several well-known prediction models, including artificial neural network models, locally weighted regression, conventional support-vector regression, and online learning support-vector regression. The results show that the performance of the proposed model is superior to that of existing models.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2013.2267735</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2013-12, Vol.14 (4), p.1700-1707
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_6553284
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Data models
Intelligent transportation systems (ITSs)
online learning weighted support-vector regression (OLWSVR)
Prediction algorithms
Predictive models
short-term traffic flow forecast
supervised algorithm
Support vector machines
Traffic control
title Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Weighting-Online%20Learning%20Algorithm%20for%20Short-Term%20Traffic%20Flow%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Young-Seon%20Jeong&rft.date=2013-12&rft.volume=14&rft.issue=4&rft.spage=1700&rft.epage=1707&rft.pages=1700-1707&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2013.2267735&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2013_2267735%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6553284&rfr_iscdi=true