An algorithm for automatic flood histogram segmentation for a PET detector

We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huini Du, Burr, Kent
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3492
container_issue
container_start_page 3488
container_title
container_volume
creator Huini Du
Burr, Kent
description We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is always identified so that irregularities in the flood histogram, such as shifted or merged peaks can be properly handled. Our detector design utilizes two types of photosensors with different dimensions. The mix of these two sizes of photosensors leads to non-uniform and non-symmetric flood histograms. The algorithm determines maps of the signal distribution from each crystal to all of the acquisition channels. The algorithm starts with a standard distribution template. For each flood histogram to be segmented, the same template is first adjusted on a global scale (equivalent to adjusting the gain on each channel), and then on a local scale (accounting for local variations). The boundaries for segmenting individual crystals are estimated by applying Anger logic to values interpolated from the distribution maps. An objective function is defined to quantify the quality of the segmentation, and the distribution maps are modified to minimize the objective function. The same algorithm can be used not only on our detector designs but also can be applied to segmenting all Anger-logic-generated flood histograms.
doi_str_mv 10.1109/NSSMIC.2012.6551796
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6551796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6551796</ieee_id><sourcerecordid>6551796</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5bf70887f6f4ff96f20fbd075e6277b117a60c0e81d51aee0610338c783177573</originalsourceid><addsrcrecordid>eNpNkMtOwzAURM1LIpR-QTf-gYR77djXWVZVgaLykFrWlZvYaVASo8Qs-HsqtQtWI82ZmcUwNkPIEKF4eNtsXleLTACKTCuFVOgLNi3IYK5JCpCgL1kiFFEKRhRX_5kw8polePRTqVV-y-7G8QvgWMrzhL3Me27bOgxNPHTch4Hbnxg6G5uS-zaEih-aMYZ6sB0fXd25Ph5Z6E9R_rHc8spFV8Yw3LMbb9vRTc86YZ-Py-3iOV2_P60W83XaIKmYqr0nMIa89rn3hfYC_L4CUk4Loj0iWQ0lOIOVQuscaAQpTUlGIpEiOWGz027jnNt9D01nh9_d-Rb5B1V4Uas</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An algorithm for automatic flood histogram segmentation for a PET detector</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huini Du ; Burr, Kent</creator><creatorcontrib>Huini Du ; Burr, Kent</creatorcontrib><description>We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is always identified so that irregularities in the flood histogram, such as shifted or merged peaks can be properly handled. Our detector design utilizes two types of photosensors with different dimensions. The mix of these two sizes of photosensors leads to non-uniform and non-symmetric flood histograms. The algorithm determines maps of the signal distribution from each crystal to all of the acquisition channels. The algorithm starts with a standard distribution template. For each flood histogram to be segmented, the same template is first adjusted on a global scale (equivalent to adjusting the gain on each channel), and then on a local scale (accounting for local variations). The boundaries for segmenting individual crystals are estimated by applying Anger logic to values interpolated from the distribution maps. An objective function is defined to quantify the quality of the segmentation, and the distribution maps are modified to minimize the objective function. The same algorithm can be used not only on our detector designs but also can be applied to segmenting all Anger-logic-generated flood histograms.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 9781467320283</identifier><identifier>ISBN: 1467320285</identifier><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 9781467320306</identifier><identifier>EISBN: 9781467320290</identifier><identifier>EISBN: 1467320307</identifier><identifier>EISBN: 1467320293</identifier><identifier>DOI: 10.1109/NSSMIC.2012.6551796</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2012, p.3488-3492</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6551796$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6551796$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huini Du</creatorcontrib><creatorcontrib>Burr, Kent</creatorcontrib><title>An algorithm for automatic flood histogram segmentation for a PET detector</title><title>2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)</title><addtitle>NSSMIC</addtitle><description>We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is always identified so that irregularities in the flood histogram, such as shifted or merged peaks can be properly handled. Our detector design utilizes two types of photosensors with different dimensions. The mix of these two sizes of photosensors leads to non-uniform and non-symmetric flood histograms. The algorithm determines maps of the signal distribution from each crystal to all of the acquisition channels. The algorithm starts with a standard distribution template. For each flood histogram to be segmented, the same template is first adjusted on a global scale (equivalent to adjusting the gain on each channel), and then on a local scale (accounting for local variations). The boundaries for segmenting individual crystals are estimated by applying Anger logic to values interpolated from the distribution maps. An objective function is defined to quantify the quality of the segmentation, and the distribution maps are modified to minimize the objective function. The same algorithm can be used not only on our detector designs but also can be applied to segmenting all Anger-logic-generated flood histograms.</description><issn>1082-3654</issn><issn>2577-0829</issn><isbn>9781467320283</isbn><isbn>1467320285</isbn><isbn>9781467320306</isbn><isbn>9781467320290</isbn><isbn>1467320307</isbn><isbn>1467320293</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAURM1LIpR-QTf-gYR77djXWVZVgaLykFrWlZvYaVASo8Qs-HsqtQtWI82ZmcUwNkPIEKF4eNtsXleLTACKTCuFVOgLNi3IYK5JCpCgL1kiFFEKRhRX_5kw8polePRTqVV-y-7G8QvgWMrzhL3Me27bOgxNPHTch4Hbnxg6G5uS-zaEih-aMYZ6sB0fXd25Ph5Z6E9R_rHc8spFV8Yw3LMbb9vRTc86YZ-Py-3iOV2_P60W83XaIKmYqr0nMIa89rn3hfYC_L4CUk4Loj0iWQ0lOIOVQuscaAQpTUlGIpEiOWGz027jnNt9D01nh9_d-Rb5B1V4Uas</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Huini Du</creator><creator>Burr, Kent</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>An algorithm for automatic flood histogram segmentation for a PET detector</title><author>Huini Du ; Burr, Kent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5bf70887f6f4ff96f20fbd075e6277b117a60c0e81d51aee0610338c783177573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Huini Du</creatorcontrib><creatorcontrib>Burr, Kent</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huini Du</au><au>Burr, Kent</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An algorithm for automatic flood histogram segmentation for a PET detector</atitle><btitle>2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)</btitle><stitle>NSSMIC</stitle><date>2012-10</date><risdate>2012</risdate><spage>3488</spage><epage>3492</epage><pages>3488-3492</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>9781467320283</isbn><isbn>1467320285</isbn><eisbn>9781467320306</eisbn><eisbn>9781467320290</eisbn><eisbn>1467320307</eisbn><eisbn>1467320293</eisbn><abstract>We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is always identified so that irregularities in the flood histogram, such as shifted or merged peaks can be properly handled. Our detector design utilizes two types of photosensors with different dimensions. The mix of these two sizes of photosensors leads to non-uniform and non-symmetric flood histograms. The algorithm determines maps of the signal distribution from each crystal to all of the acquisition channels. The algorithm starts with a standard distribution template. For each flood histogram to be segmented, the same template is first adjusted on a global scale (equivalent to adjusting the gain on each channel), and then on a local scale (accounting for local variations). The boundaries for segmenting individual crystals are estimated by applying Anger logic to values interpolated from the distribution maps. An objective function is defined to quantify the quality of the segmentation, and the distribution maps are modified to minimize the objective function. The same algorithm can be used not only on our detector designs but also can be applied to segmenting all Anger-logic-generated flood histograms.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2012.6551796</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2012, p.3488-3492
issn 1082-3654
2577-0829
language eng
recordid cdi_ieee_primary_6551796
source IEEE Electronic Library (IEL) Conference Proceedings
title An algorithm for automatic flood histogram segmentation for a PET detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20algorithm%20for%20automatic%20flood%20histogram%20segmentation%20for%20a%20PET%20detector&rft.btitle=2012%20IEEE%20Nuclear%20Science%20Symposium%20and%20Medical%20Imaging%20Conference%20Record%20(NSS/MIC)&rft.au=Huini%20Du&rft.date=2012-10&rft.spage=3488&rft.epage=3492&rft.pages=3488-3492&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=9781467320283&rft.isbn_list=1467320285&rft_id=info:doi/10.1109/NSSMIC.2012.6551796&rft_dat=%3Cieee_6IE%3E6551796%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467320306&rft.eisbn_list=9781467320290&rft.eisbn_list=1467320307&rft.eisbn_list=1467320293&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6551796&rfr_iscdi=true