An algorithm for automatic flood histogram segmentation for a PET detector
We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3492 |
---|---|
container_issue | |
container_start_page | 3488 |
container_title | |
container_volume | |
creator | Huini Du Burr, Kent |
description | We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is always identified so that irregularities in the flood histogram, such as shifted or merged peaks can be properly handled. Our detector design utilizes two types of photosensors with different dimensions. The mix of these two sizes of photosensors leads to non-uniform and non-symmetric flood histograms. The algorithm determines maps of the signal distribution from each crystal to all of the acquisition channels. The algorithm starts with a standard distribution template. For each flood histogram to be segmented, the same template is first adjusted on a global scale (equivalent to adjusting the gain on each channel), and then on a local scale (accounting for local variations). The boundaries for segmenting individual crystals are estimated by applying Anger logic to values interpolated from the distribution maps. An objective function is defined to quantify the quality of the segmentation, and the distribution maps are modified to minimize the objective function. The same algorithm can be used not only on our detector designs but also can be applied to segmenting all Anger-logic-generated flood histograms. |
doi_str_mv | 10.1109/NSSMIC.2012.6551796 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6551796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6551796</ieee_id><sourcerecordid>6551796</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5bf70887f6f4ff96f20fbd075e6277b117a60c0e81d51aee0610338c783177573</originalsourceid><addsrcrecordid>eNpNkMtOwzAURM1LIpR-QTf-gYR77djXWVZVgaLykFrWlZvYaVASo8Qs-HsqtQtWI82ZmcUwNkPIEKF4eNtsXleLTACKTCuFVOgLNi3IYK5JCpCgL1kiFFEKRhRX_5kw8polePRTqVV-y-7G8QvgWMrzhL3Me27bOgxNPHTch4Hbnxg6G5uS-zaEih-aMYZ6sB0fXd25Ph5Z6E9R_rHc8spFV8Yw3LMbb9vRTc86YZ-Py-3iOV2_P60W83XaIKmYqr0nMIa89rn3hfYC_L4CUk4Loj0iWQ0lOIOVQuscaAQpTUlGIpEiOWGz027jnNt9D01nh9_d-Rb5B1V4Uas</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An algorithm for automatic flood histogram segmentation for a PET detector</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huini Du ; Burr, Kent</creator><creatorcontrib>Huini Du ; Burr, Kent</creatorcontrib><description>We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is always identified so that irregularities in the flood histogram, such as shifted or merged peaks can be properly handled. Our detector design utilizes two types of photosensors with different dimensions. The mix of these two sizes of photosensors leads to non-uniform and non-symmetric flood histograms. The algorithm determines maps of the signal distribution from each crystal to all of the acquisition channels. The algorithm starts with a standard distribution template. For each flood histogram to be segmented, the same template is first adjusted on a global scale (equivalent to adjusting the gain on each channel), and then on a local scale (accounting for local variations). The boundaries for segmenting individual crystals are estimated by applying Anger logic to values interpolated from the distribution maps. An objective function is defined to quantify the quality of the segmentation, and the distribution maps are modified to minimize the objective function. The same algorithm can be used not only on our detector designs but also can be applied to segmenting all Anger-logic-generated flood histograms.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 9781467320283</identifier><identifier>ISBN: 1467320285</identifier><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 9781467320306</identifier><identifier>EISBN: 9781467320290</identifier><identifier>EISBN: 1467320307</identifier><identifier>EISBN: 1467320293</identifier><identifier>DOI: 10.1109/NSSMIC.2012.6551796</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2012, p.3488-3492</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6551796$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6551796$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huini Du</creatorcontrib><creatorcontrib>Burr, Kent</creatorcontrib><title>An algorithm for automatic flood histogram segmentation for a PET detector</title><title>2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)</title><addtitle>NSSMIC</addtitle><description>We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is always identified so that irregularities in the flood histogram, such as shifted or merged peaks can be properly handled. Our detector design utilizes two types of photosensors with different dimensions. The mix of these two sizes of photosensors leads to non-uniform and non-symmetric flood histograms. The algorithm determines maps of the signal distribution from each crystal to all of the acquisition channels. The algorithm starts with a standard distribution template. For each flood histogram to be segmented, the same template is first adjusted on a global scale (equivalent to adjusting the gain on each channel), and then on a local scale (accounting for local variations). The boundaries for segmenting individual crystals are estimated by applying Anger logic to values interpolated from the distribution maps. An objective function is defined to quantify the quality of the segmentation, and the distribution maps are modified to minimize the objective function. The same algorithm can be used not only on our detector designs but also can be applied to segmenting all Anger-logic-generated flood histograms.</description><issn>1082-3654</issn><issn>2577-0829</issn><isbn>9781467320283</isbn><isbn>1467320285</isbn><isbn>9781467320306</isbn><isbn>9781467320290</isbn><isbn>1467320307</isbn><isbn>1467320293</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAURM1LIpR-QTf-gYR77djXWVZVgaLykFrWlZvYaVASo8Qs-HsqtQtWI82ZmcUwNkPIEKF4eNtsXleLTACKTCuFVOgLNi3IYK5JCpCgL1kiFFEKRhRX_5kw8polePRTqVV-y-7G8QvgWMrzhL3Me27bOgxNPHTch4Hbnxg6G5uS-zaEih-aMYZ6sB0fXd25Ph5Z6E9R_rHc8spFV8Yw3LMbb9vRTc86YZ-Py-3iOV2_P60W83XaIKmYqr0nMIa89rn3hfYC_L4CUk4Loj0iWQ0lOIOVQuscaAQpTUlGIpEiOWGz027jnNt9D01nh9_d-Rb5B1V4Uas</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Huini Du</creator><creator>Burr, Kent</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>An algorithm for automatic flood histogram segmentation for a PET detector</title><author>Huini Du ; Burr, Kent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5bf70887f6f4ff96f20fbd075e6277b117a60c0e81d51aee0610338c783177573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Huini Du</creatorcontrib><creatorcontrib>Burr, Kent</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huini Du</au><au>Burr, Kent</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An algorithm for automatic flood histogram segmentation for a PET detector</atitle><btitle>2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)</btitle><stitle>NSSMIC</stitle><date>2012-10</date><risdate>2012</risdate><spage>3488</spage><epage>3492</epage><pages>3488-3492</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>9781467320283</isbn><isbn>1467320285</isbn><eisbn>9781467320306</eisbn><eisbn>9781467320290</eisbn><eisbn>1467320307</eisbn><eisbn>1467320293</eisbn><abstract>We describe a new algorithm for automatic segmenting crystal position map (flood histogram) for PET scintillation detectors. The algorithm naturally reproduces the distortion patterns that are observed in flood histograms generated using Anger logic. It ensures that the correct number of regions is always identified so that irregularities in the flood histogram, such as shifted or merged peaks can be properly handled. Our detector design utilizes two types of photosensors with different dimensions. The mix of these two sizes of photosensors leads to non-uniform and non-symmetric flood histograms. The algorithm determines maps of the signal distribution from each crystal to all of the acquisition channels. The algorithm starts with a standard distribution template. For each flood histogram to be segmented, the same template is first adjusted on a global scale (equivalent to adjusting the gain on each channel), and then on a local scale (accounting for local variations). The boundaries for segmenting individual crystals are estimated by applying Anger logic to values interpolated from the distribution maps. An objective function is defined to quantify the quality of the segmentation, and the distribution maps are modified to minimize the objective function. The same algorithm can be used not only on our detector designs but also can be applied to segmenting all Anger-logic-generated flood histograms.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2012.6551796</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3654 |
ispartof | 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2012, p.3488-3492 |
issn | 1082-3654 2577-0829 |
language | eng |
recordid | cdi_ieee_primary_6551796 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
title | An algorithm for automatic flood histogram segmentation for a PET detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20algorithm%20for%20automatic%20flood%20histogram%20segmentation%20for%20a%20PET%20detector&rft.btitle=2012%20IEEE%20Nuclear%20Science%20Symposium%20and%20Medical%20Imaging%20Conference%20Record%20(NSS/MIC)&rft.au=Huini%20Du&rft.date=2012-10&rft.spage=3488&rft.epage=3492&rft.pages=3488-3492&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=9781467320283&rft.isbn_list=1467320285&rft_id=info:doi/10.1109/NSSMIC.2012.6551796&rft_dat=%3Cieee_6IE%3E6551796%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467320306&rft.eisbn_list=9781467320290&rft.eisbn_list=1467320307&rft.eisbn_list=1467320293&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6551796&rfr_iscdi=true |