A support vector machine for terrain classification in on-demand deployments of wireless sensor networks

Terrain characteristics can significantly alter the quality of the results provided by the deployment methodology of large-scale wireless sensor networks. For example, transmissions between nodes that are heavily obstructed will require additional transmission power to establish connection between n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haber, R., Peter, A., Otero, C. E., Kostanic, I., Ejnioui, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846
container_issue
container_start_page 841
container_title
container_volume
creator Haber, R.
Peter, A.
Otero, C. E.
Kostanic, I.
Ejnioui, A.
description Terrain characteristics can significantly alter the quality of the results provided by the deployment methodology of large-scale wireless sensor networks. For example, transmissions between nodes that are heavily obstructed will require additional transmission power to establish connection between nodes. In some cases, heavily obstructed areas may prevent nodes from establishing a connection at all. Therefore, terrain analysis and classification of specific deployment areas should be incorporated in the methodology process for evaluation and optimization of the performance of wireless sensor networks upon deployment. Although there exists radio frequency (RF) models capable of modeling obstructions, such as vegetation, foliage, etc., automatic assignment of parameter values for these models may be troublesome, specifically in highly irregular deployments terrains, where proximity of poor and optimal conditions for signal propagation may be adjacent to each other. In these situations, parameter estimation for modeling terrain obstruction may result in overly optimistic or pessimistic results, causing characterizations or predictions that deviate from the true performance of the WSN once deployed. This paper presents the results of employing a support vector machine for automatic terrain classification. The approach can be used to automatically determine areas of high obstruction, which is essential to estimate obstruction parameters in simulations and enhancing the overall decision-making process during pre-deployment of large-scale and irregular deployment terrains.
doi_str_mv 10.1109/SysCon.2013.6549982
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6549982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6549982</ieee_id><sourcerecordid>6549982</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e2d1b578d4367acc7232de04380788160a42558f9b53ec720b61f5a7708be083</originalsourceid><addsrcrecordid>eNo1UEtOwzAUNEJIQOkJuvEFUp5jO3aWVcVPqsSC7isneVENiR35GarenkiU1fw0sxjGVgLWQkD9-HGmbQzrEoRcV1rVtS2v2LI2VqjKSCnAimt2_y-MumVLok8AmNsGVH3HjhtO39MUU-Y_2OaY-Ojaow_I-5lnTMn5wNvBEfnety77GPjsxFB0OLrQ8Q6nIZ5HDJl47PnJJxyQiBMGmicC5lNMX_TAbno3EC4vuGD756f99rXYvb-8bTe7wgujc4FlJxptbKdkZVzbmlKWHYKSFoy1ogKnSq1tXzda4pxCU4leO2PANghWLtjqb9Yj4mFKfnTpfLh8I38BL9BaVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A support vector machine for terrain classification in on-demand deployments of wireless sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haber, R. ; Peter, A. ; Otero, C. E. ; Kostanic, I. ; Ejnioui, A.</creator><creatorcontrib>Haber, R. ; Peter, A. ; Otero, C. E. ; Kostanic, I. ; Ejnioui, A.</creatorcontrib><description>Terrain characteristics can significantly alter the quality of the results provided by the deployment methodology of large-scale wireless sensor networks. For example, transmissions between nodes that are heavily obstructed will require additional transmission power to establish connection between nodes. In some cases, heavily obstructed areas may prevent nodes from establishing a connection at all. Therefore, terrain analysis and classification of specific deployment areas should be incorporated in the methodology process for evaluation and optimization of the performance of wireless sensor networks upon deployment. Although there exists radio frequency (RF) models capable of modeling obstructions, such as vegetation, foliage, etc., automatic assignment of parameter values for these models may be troublesome, specifically in highly irregular deployments terrains, where proximity of poor and optimal conditions for signal propagation may be adjacent to each other. In these situations, parameter estimation for modeling terrain obstruction may result in overly optimistic or pessimistic results, causing characterizations or predictions that deviate from the true performance of the WSN once deployed. This paper presents the results of employing a support vector machine for automatic terrain classification. The approach can be used to automatically determine areas of high obstruction, which is essential to estimate obstruction parameters in simulations and enhancing the overall decision-making process during pre-deployment of large-scale and irregular deployment terrains.</description><identifier>ISBN: 1467331074</identifier><identifier>ISBN: 9781467331074</identifier><identifier>EISBN: 9781467331081</identifier><identifier>EISBN: 9781467331067</identifier><identifier>EISBN: 1467331066</identifier><identifier>EISBN: 1467331082</identifier><identifier>DOI: 10.1109/SysCon.2013.6549982</identifier><language>eng</language><publisher>IEEE</publisher><subject>deployments ; Image color analysis ; image processing ; machine learning ; Modeling ; modeling and simulation ; Optimization ; performance evaluation ; Planning ; Support vector machines ; Vegetation mapping ; Wireless sensor networks</subject><ispartof>2013 IEEE International Systems Conference (SysCon), 2013, p.841-846</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6549982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6549982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haber, R.</creatorcontrib><creatorcontrib>Peter, A.</creatorcontrib><creatorcontrib>Otero, C. E.</creatorcontrib><creatorcontrib>Kostanic, I.</creatorcontrib><creatorcontrib>Ejnioui, A.</creatorcontrib><title>A support vector machine for terrain classification in on-demand deployments of wireless sensor networks</title><title>2013 IEEE International Systems Conference (SysCon)</title><addtitle>SysCon</addtitle><description>Terrain characteristics can significantly alter the quality of the results provided by the deployment methodology of large-scale wireless sensor networks. For example, transmissions between nodes that are heavily obstructed will require additional transmission power to establish connection between nodes. In some cases, heavily obstructed areas may prevent nodes from establishing a connection at all. Therefore, terrain analysis and classification of specific deployment areas should be incorporated in the methodology process for evaluation and optimization of the performance of wireless sensor networks upon deployment. Although there exists radio frequency (RF) models capable of modeling obstructions, such as vegetation, foliage, etc., automatic assignment of parameter values for these models may be troublesome, specifically in highly irregular deployments terrains, where proximity of poor and optimal conditions for signal propagation may be adjacent to each other. In these situations, parameter estimation for modeling terrain obstruction may result in overly optimistic or pessimistic results, causing characterizations or predictions that deviate from the true performance of the WSN once deployed. This paper presents the results of employing a support vector machine for automatic terrain classification. The approach can be used to automatically determine areas of high obstruction, which is essential to estimate obstruction parameters in simulations and enhancing the overall decision-making process during pre-deployment of large-scale and irregular deployment terrains.</description><subject>deployments</subject><subject>Image color analysis</subject><subject>image processing</subject><subject>machine learning</subject><subject>Modeling</subject><subject>modeling and simulation</subject><subject>Optimization</subject><subject>performance evaluation</subject><subject>Planning</subject><subject>Support vector machines</subject><subject>Vegetation mapping</subject><subject>Wireless sensor networks</subject><isbn>1467331074</isbn><isbn>9781467331074</isbn><isbn>9781467331081</isbn><isbn>9781467331067</isbn><isbn>1467331066</isbn><isbn>1467331082</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtOwzAUNEJIQOkJuvEFUp5jO3aWVcVPqsSC7isneVENiR35GarenkiU1fw0sxjGVgLWQkD9-HGmbQzrEoRcV1rVtS2v2LI2VqjKSCnAimt2_y-MumVLok8AmNsGVH3HjhtO39MUU-Y_2OaY-Ojaow_I-5lnTMn5wNvBEfnety77GPjsxFB0OLrQ8Q6nIZ5HDJl47PnJJxyQiBMGmicC5lNMX_TAbno3EC4vuGD756f99rXYvb-8bTe7wgujc4FlJxptbKdkZVzbmlKWHYKSFoy1ogKnSq1tXzda4pxCU4leO2PANghWLtjqb9Yj4mFKfnTpfLh8I38BL9BaVA</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Haber, R.</creator><creator>Peter, A.</creator><creator>Otero, C. E.</creator><creator>Kostanic, I.</creator><creator>Ejnioui, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>A support vector machine for terrain classification in on-demand deployments of wireless sensor networks</title><author>Haber, R. ; Peter, A. ; Otero, C. E. ; Kostanic, I. ; Ejnioui, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e2d1b578d4367acc7232de04380788160a42558f9b53ec720b61f5a7708be083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>deployments</topic><topic>Image color analysis</topic><topic>image processing</topic><topic>machine learning</topic><topic>Modeling</topic><topic>modeling and simulation</topic><topic>Optimization</topic><topic>performance evaluation</topic><topic>Planning</topic><topic>Support vector machines</topic><topic>Vegetation mapping</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Haber, R.</creatorcontrib><creatorcontrib>Peter, A.</creatorcontrib><creatorcontrib>Otero, C. E.</creatorcontrib><creatorcontrib>Kostanic, I.</creatorcontrib><creatorcontrib>Ejnioui, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haber, R.</au><au>Peter, A.</au><au>Otero, C. E.</au><au>Kostanic, I.</au><au>Ejnioui, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A support vector machine for terrain classification in on-demand deployments of wireless sensor networks</atitle><btitle>2013 IEEE International Systems Conference (SysCon)</btitle><stitle>SysCon</stitle><date>2013-04</date><risdate>2013</risdate><spage>841</spage><epage>846</epage><pages>841-846</pages><isbn>1467331074</isbn><isbn>9781467331074</isbn><eisbn>9781467331081</eisbn><eisbn>9781467331067</eisbn><eisbn>1467331066</eisbn><eisbn>1467331082</eisbn><abstract>Terrain characteristics can significantly alter the quality of the results provided by the deployment methodology of large-scale wireless sensor networks. For example, transmissions between nodes that are heavily obstructed will require additional transmission power to establish connection between nodes. In some cases, heavily obstructed areas may prevent nodes from establishing a connection at all. Therefore, terrain analysis and classification of specific deployment areas should be incorporated in the methodology process for evaluation and optimization of the performance of wireless sensor networks upon deployment. Although there exists radio frequency (RF) models capable of modeling obstructions, such as vegetation, foliage, etc., automatic assignment of parameter values for these models may be troublesome, specifically in highly irregular deployments terrains, where proximity of poor and optimal conditions for signal propagation may be adjacent to each other. In these situations, parameter estimation for modeling terrain obstruction may result in overly optimistic or pessimistic results, causing characterizations or predictions that deviate from the true performance of the WSN once deployed. This paper presents the results of employing a support vector machine for automatic terrain classification. The approach can be used to automatically determine areas of high obstruction, which is essential to estimate obstruction parameters in simulations and enhancing the overall decision-making process during pre-deployment of large-scale and irregular deployment terrains.</abstract><pub>IEEE</pub><doi>10.1109/SysCon.2013.6549982</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467331074
ispartof 2013 IEEE International Systems Conference (SysCon), 2013, p.841-846
issn
language eng
recordid cdi_ieee_primary_6549982
source IEEE Electronic Library (IEL) Conference Proceedings
subjects deployments
Image color analysis
image processing
machine learning
Modeling
modeling and simulation
Optimization
performance evaluation
Planning
Support vector machines
Vegetation mapping
Wireless sensor networks
title A support vector machine for terrain classification in on-demand deployments of wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20support%20vector%20machine%20for%20terrain%20classification%20in%20on-demand%20deployments%20of%20wireless%20sensor%20networks&rft.btitle=2013%20IEEE%20International%20Systems%20Conference%20(SysCon)&rft.au=Haber,%20R.&rft.date=2013-04&rft.spage=841&rft.epage=846&rft.pages=841-846&rft.isbn=1467331074&rft.isbn_list=9781467331074&rft_id=info:doi/10.1109/SysCon.2013.6549982&rft_dat=%3Cieee_6IE%3E6549982%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467331081&rft.eisbn_list=9781467331067&rft.eisbn_list=1467331066&rft.eisbn_list=1467331082&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6549982&rfr_iscdi=true