Training sample dimensions impact on artificial neural network optimal structure

The paper addresses the problem of electric load forecasting, using artificial neural networks mathematical apparatus, subject to error minimization on the long forecasting interval. Balanced artificial neural network architecture gives the possibility to maintain small deviation between forecasted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Manusov, V. Z., Makarov, I. S., Dmitriev, S. A., Eroshenko, S. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue
container_start_page 156
container_title
container_volume
creator Manusov, V. Z.
Makarov, I. S.
Dmitriev, S. A.
Eroshenko, S. A.
description The paper addresses the problem of electric load forecasting, using artificial neural networks mathematical apparatus, subject to error minimization on the long forecasting interval. Balanced artificial neural network architecture gives the possibility to maintain small deviation between forecasted and real values simultaneously with constrained squared error variation maintenance. Proposed methodology was verified using real data.
doi_str_mv 10.1109/EEEIC.2013.6549608
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6549608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6549608</ieee_id><sourcerecordid>6549608</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e469bb08691d171691a63c108acb8b3d33c396c296500218d11fe6ae913281ae3</originalsourceid><addsrcrecordid>eNotkMFOhDAURWuMiTryA7rpD4DvUSjt0hB0JplEF-N6UkoxVSikLTH-vURZnZzFvbm5hNwjZIggH5umOdRZDsgyXhaSg7ggiawEFrxiDEohL8ntJhyKa5KE8AkAa5hLiTfk7eSVddZ90KDGeTC0s6NxwU4uUDvOSkc6Oap8tL3VVg3UmcX_IX5P_otOc7Tj6iH6RcfFmzty1ashmGTjjrw_N6d6nx5fXw710zG1WJUxNQWXbQuCS-ywwhWKM40glG5FyzrGNJNc55KXADmKDrE3XBmJLBeoDNuRh_9ea4w5z35d4X_O2wnsFyhGUM8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Training sample dimensions impact on artificial neural network optimal structure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Manusov, V. Z. ; Makarov, I. S. ; Dmitriev, S. A. ; Eroshenko, S. A.</creator><creatorcontrib>Manusov, V. Z. ; Makarov, I. S. ; Dmitriev, S. A. ; Eroshenko, S. A.</creatorcontrib><description>The paper addresses the problem of electric load forecasting, using artificial neural networks mathematical apparatus, subject to error minimization on the long forecasting interval. Balanced artificial neural network architecture gives the possibility to maintain small deviation between forecasted and real values simultaneously with constrained squared error variation maintenance. Proposed methodology was verified using real data.</description><identifier>ISBN: 1467330604</identifier><identifier>ISBN: 9781467330602</identifier><identifier>EISBN: 9781467330589</identifier><identifier>EISBN: 1467330582</identifier><identifier>EISBN: 9781467330596</identifier><identifier>EISBN: 1467330590</identifier><identifier>DOI: 10.1109/EEEIC.2013.6549608</identifier><language>eng</language><publisher>IEEE</publisher><subject>artificial neural network ; Artificial neural networks ; Biological neural networks ; Energy consumption ; Forecasting ; neural network training ; Training ; Vectors</subject><ispartof>2013 12th International Conference on Environment and Electrical Engineering, 2013, p.156-159</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6549608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6549608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manusov, V. Z.</creatorcontrib><creatorcontrib>Makarov, I. S.</creatorcontrib><creatorcontrib>Dmitriev, S. A.</creatorcontrib><creatorcontrib>Eroshenko, S. A.</creatorcontrib><title>Training sample dimensions impact on artificial neural network optimal structure</title><title>2013 12th International Conference on Environment and Electrical Engineering</title><addtitle>EEEIC</addtitle><description>The paper addresses the problem of electric load forecasting, using artificial neural networks mathematical apparatus, subject to error minimization on the long forecasting interval. Balanced artificial neural network architecture gives the possibility to maintain small deviation between forecasted and real values simultaneously with constrained squared error variation maintenance. Proposed methodology was verified using real data.</description><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>neural network training</subject><subject>Training</subject><subject>Vectors</subject><isbn>1467330604</isbn><isbn>9781467330602</isbn><isbn>9781467330589</isbn><isbn>1467330582</isbn><isbn>9781467330596</isbn><isbn>1467330590</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMFOhDAURWuMiTryA7rpD4DvUSjt0hB0JplEF-N6UkoxVSikLTH-vURZnZzFvbm5hNwjZIggH5umOdRZDsgyXhaSg7ggiawEFrxiDEohL8ntJhyKa5KE8AkAa5hLiTfk7eSVddZ90KDGeTC0s6NxwU4uUDvOSkc6Oap8tL3VVg3UmcX_IX5P_otOc7Tj6iH6RcfFmzty1ashmGTjjrw_N6d6nx5fXw710zG1WJUxNQWXbQuCS-ywwhWKM40glG5FyzrGNJNc55KXADmKDrE3XBmJLBeoDNuRh_9ea4w5z35d4X_O2wnsFyhGUM8</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Manusov, V. Z.</creator><creator>Makarov, I. S.</creator><creator>Dmitriev, S. A.</creator><creator>Eroshenko, S. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>Training sample dimensions impact on artificial neural network optimal structure</title><author>Manusov, V. Z. ; Makarov, I. S. ; Dmitriev, S. A. ; Eroshenko, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e469bb08691d171691a63c108acb8b3d33c396c296500218d11fe6ae913281ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>neural network training</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Manusov, V. Z.</creatorcontrib><creatorcontrib>Makarov, I. S.</creatorcontrib><creatorcontrib>Dmitriev, S. A.</creatorcontrib><creatorcontrib>Eroshenko, S. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manusov, V. Z.</au><au>Makarov, I. S.</au><au>Dmitriev, S. A.</au><au>Eroshenko, S. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Training sample dimensions impact on artificial neural network optimal structure</atitle><btitle>2013 12th International Conference on Environment and Electrical Engineering</btitle><stitle>EEEIC</stitle><date>2013-05</date><risdate>2013</risdate><spage>156</spage><epage>159</epage><pages>156-159</pages><isbn>1467330604</isbn><isbn>9781467330602</isbn><eisbn>9781467330589</eisbn><eisbn>1467330582</eisbn><eisbn>9781467330596</eisbn><eisbn>1467330590</eisbn><abstract>The paper addresses the problem of electric load forecasting, using artificial neural networks mathematical apparatus, subject to error minimization on the long forecasting interval. Balanced artificial neural network architecture gives the possibility to maintain small deviation between forecasted and real values simultaneously with constrained squared error variation maintenance. Proposed methodology was verified using real data.</abstract><pub>IEEE</pub><doi>10.1109/EEEIC.2013.6549608</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467330604
ispartof 2013 12th International Conference on Environment and Electrical Engineering, 2013, p.156-159
issn
language eng
recordid cdi_ieee_primary_6549608
source IEEE Electronic Library (IEL) Conference Proceedings
subjects artificial neural network
Artificial neural networks
Biological neural networks
Energy consumption
Forecasting
neural network training
Training
Vectors
title Training sample dimensions impact on artificial neural network optimal structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Training%20sample%20dimensions%20impact%20on%20artificial%20neural%20network%20optimal%20structure&rft.btitle=2013%2012th%20International%20Conference%20on%20Environment%20and%20Electrical%20Engineering&rft.au=Manusov,%20V.%20Z.&rft.date=2013-05&rft.spage=156&rft.epage=159&rft.pages=156-159&rft.isbn=1467330604&rft.isbn_list=9781467330602&rft_id=info:doi/10.1109/EEEIC.2013.6549608&rft_dat=%3Cieee_6IE%3E6549608%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467330589&rft.eisbn_list=1467330582&rft.eisbn_list=9781467330596&rft.eisbn_list=1467330590&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6549608&rfr_iscdi=true