Resilin: Elastic MapReduce over Multiple Clouds

The MapReduce programming model offers a simple and efficient way of performing distributed computation over large data sets. To enable the usage of MapReduce in the cloud, Amazon Web Services offers Elastic MapReduce (EMR), a web service enabling users to easily run MapReduce jobs by leveraging Ama...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iordache, A., Morin, C., Parlavantzas, N., Feller, E., Riteau, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue
container_start_page 261
container_title
container_volume
creator Iordache, A.
Morin, C.
Parlavantzas, N.
Feller, E.
Riteau, P.
description The MapReduce programming model offers a simple and efficient way of performing distributed computation over large data sets. To enable the usage of MapReduce in the cloud, Amazon Web Services offers Elastic MapReduce (EMR), a web service enabling users to easily run MapReduce jobs by leveraging Amazon resources (i.e. compute and storage). EMR takes care of tasks such as resource provisioning, performance tuning, and fault tolerance thus allowing the users to concentrate on the problem to be solved. However, EMR is restricted to Amazon's resources and is provided at an additional cost. In this paper, we present the design, implementation, and evaluation of Resilin, a novel EMR API-compatible system to perform distributed MapReduce computations. Resilin goes one step beyond Amazon's proprietary EMR solution and allows users (e.g. companies, scientists) to leverage resources from one or multiple public and/or private clouds. This gives Resilin users the opportunity to perform MapReduce computations over a large number of potentially geographically distributed resources. An extensive experimental evaluation conducted on multiple clusters of the Grid'5000 experimentation test bed shows that Resilin enables the use of geographically distributed resources with only limited impact on MapReduce jobs execution time.
doi_str_mv 10.1109/CCGrid.2013.48
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6546101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6546101</ieee_id><sourcerecordid>6546101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-80d89cb4063169f56f8238463b386e5e71bebf19d79b7b3a8a19ae0b122ecd973</originalsourceid><addsrcrecordid>eNotz81KxDAUQOGICOrYrRs3fYF2cvNzk7iTMo7CDMKg6yFpbiESndK0gm-voKuz--Awdgu8BeBu3XXbKcVWcJCtsmescsZyg04r51Cfs2tQaCQq1OaSVaW8c86BSw1CX7H1gUrK6fO-3mRf5tTXez8eKC491acvmur9kuc0Zqq7fFpiuWEXg8-Fqv-u2Nvj5rV7anYv2-fuYdd4YfXcWB6t64PiKAHdoHGwQlqFMkiLpMlAoDCAi8YFE6S3HpwnHkAI6qMzcsXu_txERMdxSh9--j6iVgi_nz-hfUNc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Resilin: Elastic MapReduce over Multiple Clouds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Iordache, A. ; Morin, C. ; Parlavantzas, N. ; Feller, E. ; Riteau, P.</creator><creatorcontrib>Iordache, A. ; Morin, C. ; Parlavantzas, N. ; Feller, E. ; Riteau, P.</creatorcontrib><description>The MapReduce programming model offers a simple and efficient way of performing distributed computation over large data sets. To enable the usage of MapReduce in the cloud, Amazon Web Services offers Elastic MapReduce (EMR), a web service enabling users to easily run MapReduce jobs by leveraging Amazon resources (i.e. compute and storage). EMR takes care of tasks such as resource provisioning, performance tuning, and fault tolerance thus allowing the users to concentrate on the problem to be solved. However, EMR is restricted to Amazon's resources and is provided at an additional cost. In this paper, we present the design, implementation, and evaluation of Resilin, a novel EMR API-compatible system to perform distributed MapReduce computations. Resilin goes one step beyond Amazon's proprietary EMR solution and allows users (e.g. companies, scientists) to leverage resources from one or multiple public and/or private clouds. This gives Resilin users the opportunity to perform MapReduce computations over a large number of potentially geographically distributed resources. An extensive experimental evaluation conducted on multiple clusters of the Grid'5000 experimentation test bed shows that Resilin enables the use of geographically distributed resources with only limited impact on MapReduce jobs execution time.</description><identifier>ISBN: 1467364657</identifier><identifier>ISBN: 9781467364652</identifier><identifier>EISBN: 9780769549965</identifier><identifier>EISBN: 0769549969</identifier><identifier>DOI: 10.1109/CCGrid.2013.48</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Apache Hadoop ; Benchmark testing ; Cloud computing ; Clouds ; Computational modeling ; Distributed databases ; Elastic MapReduce ; Fault tolerance ; Multi-cloud Environment ; Programming ; Virtualization</subject><ispartof>2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, 2013, p.261-268</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6546101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6546101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iordache, A.</creatorcontrib><creatorcontrib>Morin, C.</creatorcontrib><creatorcontrib>Parlavantzas, N.</creatorcontrib><creatorcontrib>Feller, E.</creatorcontrib><creatorcontrib>Riteau, P.</creatorcontrib><title>Resilin: Elastic MapReduce over Multiple Clouds</title><title>2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing</title><addtitle>ccgrid</addtitle><description>The MapReduce programming model offers a simple and efficient way of performing distributed computation over large data sets. To enable the usage of MapReduce in the cloud, Amazon Web Services offers Elastic MapReduce (EMR), a web service enabling users to easily run MapReduce jobs by leveraging Amazon resources (i.e. compute and storage). EMR takes care of tasks such as resource provisioning, performance tuning, and fault tolerance thus allowing the users to concentrate on the problem to be solved. However, EMR is restricted to Amazon's resources and is provided at an additional cost. In this paper, we present the design, implementation, and evaluation of Resilin, a novel EMR API-compatible system to perform distributed MapReduce computations. Resilin goes one step beyond Amazon's proprietary EMR solution and allows users (e.g. companies, scientists) to leverage resources from one or multiple public and/or private clouds. This gives Resilin users the opportunity to perform MapReduce computations over a large number of potentially geographically distributed resources. An extensive experimental evaluation conducted on multiple clusters of the Grid'5000 experimentation test bed shows that Resilin enables the use of geographically distributed resources with only limited impact on MapReduce jobs execution time.</description><subject>Apache Hadoop</subject><subject>Benchmark testing</subject><subject>Cloud computing</subject><subject>Clouds</subject><subject>Computational modeling</subject><subject>Distributed databases</subject><subject>Elastic MapReduce</subject><subject>Fault tolerance</subject><subject>Multi-cloud Environment</subject><subject>Programming</subject><subject>Virtualization</subject><isbn>1467364657</isbn><isbn>9781467364652</isbn><isbn>9780769549965</isbn><isbn>0769549969</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotz81KxDAUQOGICOrYrRs3fYF2cvNzk7iTMo7CDMKg6yFpbiESndK0gm-voKuz--Awdgu8BeBu3XXbKcVWcJCtsmescsZyg04r51Cfs2tQaCQq1OaSVaW8c86BSw1CX7H1gUrK6fO-3mRf5tTXez8eKC491acvmur9kuc0Zqq7fFpiuWEXg8-Fqv-u2Nvj5rV7anYv2-fuYdd4YfXcWB6t64PiKAHdoHGwQlqFMkiLpMlAoDCAi8YFE6S3HpwnHkAI6qMzcsXu_txERMdxSh9--j6iVgi_nz-hfUNc</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Iordache, A.</creator><creator>Morin, C.</creator><creator>Parlavantzas, N.</creator><creator>Feller, E.</creator><creator>Riteau, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20130101</creationdate><title>Resilin: Elastic MapReduce over Multiple Clouds</title><author>Iordache, A. ; Morin, C. ; Parlavantzas, N. ; Feller, E. ; Riteau, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-80d89cb4063169f56f8238463b386e5e71bebf19d79b7b3a8a19ae0b122ecd973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Apache Hadoop</topic><topic>Benchmark testing</topic><topic>Cloud computing</topic><topic>Clouds</topic><topic>Computational modeling</topic><topic>Distributed databases</topic><topic>Elastic MapReduce</topic><topic>Fault tolerance</topic><topic>Multi-cloud Environment</topic><topic>Programming</topic><topic>Virtualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Iordache, A.</creatorcontrib><creatorcontrib>Morin, C.</creatorcontrib><creatorcontrib>Parlavantzas, N.</creatorcontrib><creatorcontrib>Feller, E.</creatorcontrib><creatorcontrib>Riteau, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iordache, A.</au><au>Morin, C.</au><au>Parlavantzas, N.</au><au>Feller, E.</au><au>Riteau, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Resilin: Elastic MapReduce over Multiple Clouds</atitle><btitle>2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing</btitle><stitle>ccgrid</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>261</spage><epage>268</epage><pages>261-268</pages><isbn>1467364657</isbn><isbn>9781467364652</isbn><eisbn>9780769549965</eisbn><eisbn>0769549969</eisbn><coden>IEEPAD</coden><abstract>The MapReduce programming model offers a simple and efficient way of performing distributed computation over large data sets. To enable the usage of MapReduce in the cloud, Amazon Web Services offers Elastic MapReduce (EMR), a web service enabling users to easily run MapReduce jobs by leveraging Amazon resources (i.e. compute and storage). EMR takes care of tasks such as resource provisioning, performance tuning, and fault tolerance thus allowing the users to concentrate on the problem to be solved. However, EMR is restricted to Amazon's resources and is provided at an additional cost. In this paper, we present the design, implementation, and evaluation of Resilin, a novel EMR API-compatible system to perform distributed MapReduce computations. Resilin goes one step beyond Amazon's proprietary EMR solution and allows users (e.g. companies, scientists) to leverage resources from one or multiple public and/or private clouds. This gives Resilin users the opportunity to perform MapReduce computations over a large number of potentially geographically distributed resources. An extensive experimental evaluation conducted on multiple clusters of the Grid'5000 experimentation test bed shows that Resilin enables the use of geographically distributed resources with only limited impact on MapReduce jobs execution time.</abstract><pub>IEEE</pub><doi>10.1109/CCGrid.2013.48</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467364657
ispartof 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, 2013, p.261-268
issn
language eng
recordid cdi_ieee_primary_6546101
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Apache Hadoop
Benchmark testing
Cloud computing
Clouds
Computational modeling
Distributed databases
Elastic MapReduce
Fault tolerance
Multi-cloud Environment
Programming
Virtualization
title Resilin: Elastic MapReduce over Multiple Clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Resilin:%20Elastic%20MapReduce%20over%20Multiple%20Clouds&rft.btitle=2013%2013th%20IEEE/ACM%20International%20Symposium%20on%20Cluster,%20Cloud,%20and%20Grid%20Computing&rft.au=Iordache,%20A.&rft.date=2013-01-01&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.isbn=1467364657&rft.isbn_list=9781467364652&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CCGrid.2013.48&rft_dat=%3Cieee_6IE%3E6546101%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549965&rft.eisbn_list=0769549969&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6546101&rfr_iscdi=true