Approximate solution for electrical networks: When these are highly oscillatory
The general solution to the slightly damped network is expressed in terms of the undamped solution by means of series expansions. The first part of the paper gives a method for evaluating the complex roots of the determinantal equation, and the second part shows how the expansions of the first part...
Gespeichert in:
Veröffentlicht in: | Journal of the A.I.E.E. 1928-01, Vol.47 (1), p.36-40 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | Journal of the A.I.E.E. |
container_volume | 47 |
creator | Guillemin, E. A. |
description | The general solution to the slightly damped network is expressed in terms of the undamped solution by means of series expansions. The first part of the paper gives a method for evaluating the complex roots of the determinantal equation, and the second part shows how the expansions of the first part may be correlated with the Heaviside formula to form the complete approximate solution. An example illustrates the application to a simple network. |
doi_str_mv | 10.1109/JAIEE.1928.6534968 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6534968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6534968</ieee_id><sourcerecordid>10_1109_JAIEE_1928_6534968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638-293a7690b685d48fd280445773d6934ac109471056e20479fa3652bec2ddec6b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpD8DGP5AyfsQPdlVVoKhSN5VYRq4zIQFTV3YQ9O9JKbC6i6szmnsIuWYwZQzs7dNsuVhMmeVmqkohrTJnZMSFVkVptTonIwBbFtaAvCSTnF8BgIHWIMyIrGf7fYpf3bvrkeYYPvou7mgTE8WAvk-dd4HusP-M6S3f0ecWd7RvMSN1CWnbvbThQGP2XQiuj-lwRS4aFzJOfnNMNveLzfyxWK0flvPZqvBKmIJb4bSysFWmrKVpaj48J0utRa2skM4Ps6RmUCrkILVtnFAl36LndY1ebcWY8NNZn2LOCZtqn4YN6VAxqI5Sqh8p1VFK9StlgG5OUIeI_8Bf-w0Q1F4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximate solution for electrical networks: When these are highly oscillatory</title><source>IEEE Electronic Library (IEL)</source><creator>Guillemin, E. A.</creator><creatorcontrib>Guillemin, E. A.</creatorcontrib><description>The general solution to the slightly damped network is expressed in terms of the undamped solution by means of series expansions. The first part of the paper gives a method for evaluating the complex roots of the determinantal equation, and the second part shows how the expansions of the first part may be correlated with the Heaviside formula to form the complete approximate solution. An example illustrates the application to a simple network.</description><identifier>ISSN: 0095-9804</identifier><identifier>EISSN: 2376-5976</identifier><identifier>DOI: 10.1109/JAIEE.1928.6534968</identifier><language>eng</language><publisher>The American Institute of Electrical Engineers</publisher><subject>Angular velocity ; Attenuation ; Damping ; Inductance ; Mathematical models ; Mechanical systems ; Resistance</subject><ispartof>Journal of the A.I.E.E., 1928-01, Vol.47 (1), p.36-40</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6534968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6534968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guillemin, E. A.</creatorcontrib><title>Approximate solution for electrical networks: When these are highly oscillatory</title><title>Journal of the A.I.E.E.</title><addtitle>JAIEE</addtitle><description>The general solution to the slightly damped network is expressed in terms of the undamped solution by means of series expansions. The first part of the paper gives a method for evaluating the complex roots of the determinantal equation, and the second part shows how the expansions of the first part may be correlated with the Heaviside formula to form the complete approximate solution. An example illustrates the application to a simple network.</description><subject>Angular velocity</subject><subject>Attenuation</subject><subject>Damping</subject><subject>Inductance</subject><subject>Mathematical models</subject><subject>Mechanical systems</subject><subject>Resistance</subject><issn>0095-9804</issn><issn>2376-5976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1928</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EElXpD8DGP5AyfsQPdlVVoKhSN5VYRq4zIQFTV3YQ9O9JKbC6i6szmnsIuWYwZQzs7dNsuVhMmeVmqkohrTJnZMSFVkVptTonIwBbFtaAvCSTnF8BgIHWIMyIrGf7fYpf3bvrkeYYPvou7mgTE8WAvk-dd4HusP-M6S3f0ecWd7RvMSN1CWnbvbThQGP2XQiuj-lwRS4aFzJOfnNMNveLzfyxWK0flvPZqvBKmIJb4bSysFWmrKVpaj48J0utRa2skM4Ps6RmUCrkILVtnFAl36LndY1ebcWY8NNZn2LOCZtqn4YN6VAxqI5Sqh8p1VFK9StlgG5OUIeI_8Bf-w0Q1F4g</recordid><startdate>192801</startdate><enddate>192801</enddate><creator>Guillemin, E. A.</creator><general>The American Institute of Electrical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>192801</creationdate><title>Approximate solution for electrical networks: When these are highly oscillatory</title><author>Guillemin, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638-293a7690b685d48fd280445773d6934ac109471056e20479fa3652bec2ddec6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1928</creationdate><topic>Angular velocity</topic><topic>Attenuation</topic><topic>Damping</topic><topic>Inductance</topic><topic>Mathematical models</topic><topic>Mechanical systems</topic><topic>Resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Guillemin, E. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the A.I.E.E.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guillemin, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate solution for electrical networks: When these are highly oscillatory</atitle><jtitle>Journal of the A.I.E.E.</jtitle><stitle>JAIEE</stitle><date>1928-01</date><risdate>1928</risdate><volume>47</volume><issue>1</issue><spage>36</spage><epage>40</epage><pages>36-40</pages><issn>0095-9804</issn><eissn>2376-5976</eissn><abstract>The general solution to the slightly damped network is expressed in terms of the undamped solution by means of series expansions. The first part of the paper gives a method for evaluating the complex roots of the determinantal equation, and the second part shows how the expansions of the first part may be correlated with the Heaviside formula to form the complete approximate solution. An example illustrates the application to a simple network.</abstract><pub>The American Institute of Electrical Engineers</pub><doi>10.1109/JAIEE.1928.6534968</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0095-9804 |
ispartof | Journal of the A.I.E.E., 1928-01, Vol.47 (1), p.36-40 |
issn | 0095-9804 2376-5976 |
language | eng |
recordid | cdi_ieee_primary_6534968 |
source | IEEE Electronic Library (IEL) |
subjects | Angular velocity Attenuation Damping Inductance Mathematical models Mechanical systems Resistance |
title | Approximate solution for electrical networks: When these are highly oscillatory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20solution%20for%20electrical%20networks:%20When%20these%20are%20highly%20oscillatory&rft.jtitle=Journal%20of%20the%20A.I.E.E.&rft.au=Guillemin,%20E.%20A.&rft.date=1928-01&rft.volume=47&rft.issue=1&rft.spage=36&rft.epage=40&rft.pages=36-40&rft.issn=0095-9804&rft.eissn=2376-5976&rft_id=info:doi/10.1109/JAIEE.1928.6534968&rft_dat=%3Ccrossref_RIE%3E10_1109_JAIEE_1928_6534968%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6534968&rfr_iscdi=true |